The Global PiezoMEMS Market 2025-2035

0

cover

cover

  • Published: May 2025
  • Pages: 258
  • Tables: 63
  • Figures: 29

 

Piezoelectric microelectromechanical sensors and actuators are used in a wide variety of applications. Compared to traditional capacitive MEMS, piezoelectric MEMS deliver superior performance and manufacturing efficiency. Piezoelectric thin films, particularly PZT, form the new basis for high-growth MEMS products such as microphones and micromirrors, gas sensors, image stabilizers, ultrasonic transducers, piezo printers that deliver excellent printing results, AR glasses and RF filters for enhanced telecommunications. 

The piezoMEMS sector represents a significant segment within the broader MEMS industry, with particularly strong presence in consumer electronics, telecommunications, and emerging IoT applications. The piezoMEMS market is expected to grow significantly faster than the broader MEMS  driven by:

  • Expansion of 5G networks and eventual 6G development
  • Increasing adoption in automotive safety and autonomous systems
  • Growth in medical imaging and diagnostic applications
  • Emergence of new consumer electronics applications

 

The emergence of new applications, particularly in IoT, automotive, and medical sectors, is expected to drive sustained growth through 2035, with potential for breakthrough applications in emerging fields such as quantum computing and advanced sensing systems.

The Global PiezoMEMS Market 2025-2035 report analyzes the global piezoelectric MEMS (PiezoMEMS) sector, providing detailed insights into technology developments, market trends, and growth opportunities from 2025 to 2035. The study examines the entire value chain from materials and manufacturing to end-user applications, with particular focus on emerging technologies and market dynamics. Report contents include: 

  • Extensive analysis of the PiezoMEMS industry, including detailed market forecasts, technology assessments, and competitive analysis.
  • Key applications such as RF filters, sensors, actuators, and transducers across various sectors including consumer electronics, automotive, medical, and industrial applications.
  • Key Market Segments covered include:
    • Sensors (microphones, accelerometers, force sensors)
    • Actuators (inkjet printheads, microspeakers, optical MEMS)
    • Transducers (ultrasonic fingerprint sensors, medical imaging)
    • RF Filters (BAW technology, FBAR/SMR solutions)
  • Detailed market analysis including:
    • Global revenue projections (2025-2035)
    • Volume forecasts by device type
    • Regional market analysis
    • Production capacity assessment
    • Wafer-level analysis
    • Supply chain evaluation
  • Technology roadmaps and development trends
  • Manufacturing strategies and challenges
  • Regional market dynamics
  • Detailed analysis of key application areas:
    • Consumer electronics (smartphones, wearables)
    • Automotive sensors and actuators
    • Medical devices and imaging systems
    • Industrial applications
    • IoT and emerging applications
  • Manufacturing and Production:
    • Wafer fabrication processes
    • Integration technologies
    • Quality control methods
    • Capacity utilization
    • Regional production distribution
    • Cost analysis
  • Technology Trends and Innovation:
    • Material innovations and enhancements
    • Manufacturing advances
    • Device miniaturization
    • Performance improvements
    • Novel applications
    • Integration strategies
  • Market opportunities and growth drivers:
    • Technical barriers and solutions
    • Market adoption factors
    • Competition analysis
    • Environmental considerations
    • Regulatory compliance
    • Future opportunities
  • Comprehensive profiles of over 100 companies including:
    • Major MEMS manufacturers
    • Material suppliers
    • Equipment providers
    • Technology developers
    • End-product manufacturers

 

Companies covered include

AAC Technologies, Aeponyx, AKM, Akoustis, AlphaMOS, Alps Alpine, AMFitzgerald-MEMS Infinity, Amphenol, Analog Devices, Anello Photonics, Asia Pacific Microsystems, ASMC (Advanced Semiconductor Manufacturing Corporation Limited), Aspinity, Atomica, Beijing Zhixin Tech, Blickfeld, Bosch, Broadcom, Butterfly Network, Canon Inc., CEA Leti, Cirrus Logic, Denso, EpicMEMS, eXo, Flusso, Formfactor, Fraunhofer IPMS, Fujifilm Dimatix, Gettop, GMEMS Technologies, Goermicro, Goertek, Guide Sensmart Technology Co. Ltd., GWIC (Guangdong WIT Integrated Circuits Co. Ltd.), Hanking Electronics, Heimann Sensor, Hewlett Packard, Hikvision (Hikmicro), Honeywell, HuaHong Grace Semiconductor Manufacturing Corporation, Huntersun, Hypernano, IceMOS Technology Ltd., Illumina, Infineon Technologies, InfiRay, Instrumems, Melexis, MEMJET, MEMSCAP SA, MEMSDrive, MEMSensing, MEMSIC, MEMSonics, Merit Sensor, Merry Electronics, Microchip Technology Inc., Microfab Technologies Inc., Micronit Microtechnologies B.V., Minebea Mitsumi, Mirrorcle, Murata, Nanox and more......

 

 

1             INTRODUCTION          16

  • 1.1        The Global MEMS market       16
    • 1.1.1    Historical          16
    • 1.1.2    Current market (2024-2025) 16
  • 1.2        Overview of Piezoelectric Technology            18
    • 1.2.1    Fundamentals of Piezoelectricity      18
    • 1.2.2    Direct and Inverse Piezoelectric Effects       18
    • 1.2.3    Key Parameters and Measurements               19
    • 1.2.4    Design Considerations            20
  • 1.3        Evolution of PiezoMEMS Technology              20
  • 1.4        PiezoMEMS Market 2020-2024          21
    • 1.4.1    Market Size and Growth Trends         21
    • 1.4.2    Application Development      22
    • 1.4.3    Technology Advancement     22
  • 1.5        Technology Landscape           23
    • 1.5.1    Core Technologies      23
    • 1.5.2    PiezoMEMS technology as a key enabler for implementing generative AI capabilities in edge devices               24
    • 1.5.3    Integration Approaches          24
    • 1.5.4    Competing Technologies       26
    • 1.5.5    Technology Readiness Levels              28
  • 1.6        Regulatory Framework             28
    • 1.6.1    Environmental Regulations  31
    • 1.6.2    Safety Requirements 31
    • 1.6.3    Certification Processes           31
    • 1.6.4    Future Regulatory Trends       31

 

2             PIEZOELECTRIC MATERIALS AND TECHNOLOGIES             32

  • 2.1        Fundamentals of Piezoelectric Materials    32
    • 2.1.1    Working Principles      32
      • 2.1.1.1 Crystal Structure         32
      • 2.1.1.2 Polarization Mechanisms      32
      • 2.1.1.3 Electromechanical Coupling              32
      • 2.1.1.4 Material Physics           32
    • 2.1.2    Key Performance Metrics       33
      • 2.1.2.1 Piezoelectric Coefficients     34
      • 2.1.2.2 Coupling Factors         34
      • 2.1.2.3 Quality Factors             34
      • 2.1.2.4 Temperature Stability               35
      • 2.1.2.5 Reliability Metrics       35
    • 2.1.3    Manufacturing Processes      36
      • 2.1.3.1 Thin Film Deposition 39
      • 2.1.3.2 Material Processing   39
      • 2.1.3.3 Quality Control             40
      • 2.1.3.4 Process Integration    41
      • 2.1.3.5 Yield Management     42
  • 2.2        Material Categories    44
    • 2.2.1    Aluminum Nitride (AlN)           48
      • 2.2.1.1 Properties and Characteristics          48
      • 2.2.1.2 Applications   48
      • 2.2.1.3 Cost Structure               49
    • 2.2.2    Scandium-doped AlN               50
      • 2.2.2.1 Doping Effects               50
      • 2.2.2.2 Performance Improvements                50
      • 2.2.2.3 Manufacturing Challenges   51
      • 2.2.2.4 Cost-Benefit Analysis              51
      • 2.2.2.5 Market Adoption          52
    • 2.2.3    Lead Zirconate Titanate (PZT)              52
      • 2.2.3.1 Material Properties     53
      • 2.2.3.2 Processing Methods 55
      • 2.2.3.3 Performance Characteristics              57
      • 2.2.3.4 Environmental Concerns       58
      • 2.2.3.5 Application Areas       59
    • 2.2.4    Emerging Materials    61
      • 2.2.4.1 KNN      61
      • 2.2.4.2 LiNbO3              61
  • 2.3        Processing Technologies        66
    • 2.3.1    Thin-film Deposition 66
      • 2.3.1.1 Sputtering Techniques             66
      • 2.3.1.2 Chemical Vapor Deposition 66
      • 2.3.1.3 Sol-Gel Processing    66
      • 2.3.1.4 Other Methods             67
    • 2.3.2    Integration Techniques            71
      • 2.3.2.1 CMOS Integration       71
      • 2.3.2.2 Wafer Bonding              72
      • 2.3.2.3 Packaging Solutions 72
      • 2.3.2.4 Novel Approaches      73
    • 2.3.3    Quality Control Methods        77

 

3             MARKET ANALYSIS AND FORECASTS 2025-2035  80

  • 3.1        Market Size and Growth          80
    • 3.1.1    Global Revenue Projections 80
      • 3.1.2    Volume Forecasts       80
      • 3.1.2.1 Unit Production Trends            80
      • 3.1.2.2 Volume by Device Type            81
      • 3.1.2.3 Production Capacity Analysis            82
      • 3.1.2.4 Capacity Utilization Rates     82
    • 3.1.3    Regional Analysis       82
      • 3.1.3.1 North America              83
      • 3.1.3.2 Europe                83
      • 3.1.3.3 Asia Pacific     84
      • 3.1.3.4 China  85
  • 3.2        Market Segmentation               86
    • 3.2.1    By Device Type              86
    • 3.2.2    By Material Type           87
    • 3.2.3    By End-user Industry 88
  • 3.3        Wafer-level Analysis 89
    • 3.3.1    Wafer Starts by Material          90
    • 3.3.2    Wafer Size Trends        91
    • 3.3.3    Manufacturing Capacity         92
    • 3.3.4    Regional Production Distribution     93

 

4             APPLICATION SEGMENTS     95

  • 4.1        Sensors             95
    • 4.1.1    Microphones  98
    • 4.1.2    Accelerometers            98
    • 4.1.3    Force Sensors               98
    • 4.1.4    Market Forecast           99
  • 4.2        Actuators          101
    • 4.2.1    Inkjet Printheads         103
    • 4.2.2    Microspeakers              103
    • 4.2.3    Optical MEMS               103
    • 4.2.4    Market Forecast           104
  • 4.3        Transducers    106
    • 4.3.1    Ultrasonic Fingerprint Sensors           108
    • 4.3.2    Medical Imaging          108
    • 4.3.3    Market Forecast           109
  • 4.4        RF Filters           111
    • 4.4.1    BAW Technology          113
    • 4.4.2    FBAR/SMR Solutions 113
    • 4.4.3    Market Forecast           113

 

5             SUPPLY CHAIN              116

 

6             TECHNOLOGY TRENDS AND INNOVATION               119

  • 6.1        Material Innovations 119
    • 6.1.1    Enhanced Performance Materials    119
    • 6.1.2    Lead-free Alternatives              121
    • 6.1.3    Novel Compositions 124
  • 6.2        Manufacturing Advances       125
    • 6.2.1    Process Improvements           129
    • 6.2.2    Integration Technologies        129
    • 6.2.3    Quality Control Methods        132
  • 6.3        Device Innovations    132
    • 6.3.1    Miniaturization Trends             132
    • 6.3.2    Performance Enhancements              136
    • 6.3.3    New Applications        139

 

7             CHALLENGES AND OPPORTUNITIES             142

  • 7.1        Technical Challenges               142
  • 7.2        Market Barriers             145
  • 7.3        Growth Opportunities              146
  • 7.4        Future Applications   149

 

8             COMPANY PROFILES                151 (106 company profiles)

 

9             APPENDICES  252

  • 9.1        Research Methodology           252
  • 9.2        Abbreviations 254

 

10          REFERENCES 256

 

List of Tables

  • Table 1. Global MEMS market 2020-2024 (Billion USD), by end user market.      17
  • Table 2. Key piezoelectric parameters and their significance.       19
  • Table 3. PiezoMEMS Market 2020-2024 (Billion USD).        21
  • Table 4. Core Technologies in PiezoMEMS. 23
  • Table 5. PiezoMEMS Integration Approaches.          25
  • Table 6. Comparison of Competing Technologies  26
  • Table 7. PiezoMEMS Technology Readiness Levels.              28
  • Table 8. Key regulations affecting piezoMEMS industry.    28
  • Table 9. PiezoMEMS key performance metrics.       33
  • Table 10. PiezoMEMS Manufacturing Processes.   36
  • Table 11. Thin film deposition in piezoMEMS fabrication. 39
  • Table 12. Material processing.            40
  • Table 13. Quality control in piezoMEMS manufacturing.  41
  • Table 14. Process integration for piezoMEMS.         42
  • Table 15. Yield management in piezoMEMS manufacturing.          43
  • Table 16. Materials Categories for PiezoMEMS.      47
  • Table 17. AlN Properties and Applications 48
  • Table 18. Cost-Benefit Analysis: ScAlN vs. AlN        51
  • Table 19. Sc-AlN vs standard AlN comparison.       52
  • Table 20. PZT Variations and Properties        53
  • Table 21. PZT Processing Methods. 55
  • Table 22. PZT performance metrics.               57
  • Table 23. PZT Application Areas        59
  • Table 24. Emerging materials comparison. 64
  • Table 25. Deposition Technology Comparison        68
  • Table 26. Process parameters for different methods.         70
  • Table 27. Integration Challenges and Solutions      74
  • Table 28. Quality Control Parameters.          78
  • Table 29. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD).          80
  • Table 30. Estimated Unit Production (Millions), 2020-2035.          80
  • Table 31. Production volumes by device type, 2020-2035.             81
  • Table 32. Capacity Utilization Rates               82
  • Table 33. PiezoMEMS Market in North America.     83
  • Table 34. PiezoMEMS Market in Europe.       84
  • Table 35. PiezoMEMS Market in Asia-Pacific.           84
  • Table 36. PiezoMEMS Market in China.         85
  • Table 37. Regional market shares and growth rates.            85
  • Table 38. Global PiezoMEMS Revenues by Device Type 2020-2035          86
  • Table 39. Global PiezoMEMS revenues by material type 2020-2035.        87
  • Table 40. Global PiezoMEMS revenues by end-user industry 2020-2035.             88
  • Table 41. Wafer production trends. 89
  • Table 42. Wafer Starts by Material.  90
  • Table 43. PiezoMEMS wafer share by fab.   91
  • Table 44. PiezoMEMS Applications in Sensors         95
  • Table 45. Global PiezoMEMS market forecast in Sensors (2024-2035).  99
  • Table 46. PiezoMEMS in Actuators   101
  • Table 47. Global PiezoMEMS market forecast Actuators (2024-2035).   104
  • Table 48. PiezoMEMS in Transducers             106
  • Table 49. Global PiezoMEMS market forecast in Transducers (2024-2035).        109
  • Table 50. PiezoMEMS in RF Filters.   111
  • Table 51. Global PiezoMEMS market forecast in Transducers (2024-2035).        114
  • Table 52. Enhanced Performance Materials for PiezoMEMS.         120
  • Table 53. PiezoMEMS Lead-free Alternatives.           122
  • Table 54. Manufacturing Advances.                125
  • Table 55. Integration technologies for piezoMEMS.              130
  • Table 56. Miniaturization Trends.      134
  • Table 57. Performance enhancements in piezoMEMS devices.    137
  • Table 58. Emerging applications for piezoMEMS technologies.    140
  • Table 59. PiezoMEMS technical challenges.              143
  • Table 60. Market barriers for piezoMEMS technologies.    145
  • Table 61. Growth opportunities for piezoMEMS.    147
  • Table 62. Future applications analysis.        149
  • Table 63. Abbreviations.         254

 

List of Figures

  • Figure 1. Global MEMS market 2020-2024 (Billions USD), by end user market. 17
  • Figure 2. Schematic illustration of piezoelectric effect.     19
  • Figure 3. Evolution of PiezoMEMS Technology.         21
  • Figure 4. PiezoMEMS Market 2020-2024 (Billion USD).      22
  • Figure 5. PiezoMEMS material roadmap.     46
  • Figure 6. Global PiezoMEMS market revenue forecast 2020-2035 (Billions USD).           80
  • Figure 7. Estimated Unit Production (Millions), 2020-2035.           81
  • Figure 8.  Global PiezoMEMS revenues by device type 2020-2035.           87
  • Figure 9. Global PiezoMEMS revenues by material type 2020-2035.         88
  • Figure 10.  Global PiezoMEMS revenues by end-user industry 2020-2035.          89
  • Figure 11. Wafer capacity by region.               93
  • Figure 12. Global PiezoMEMS market forecast in Sensors (2024-2035) BILLIONS USD.              100
  • Figure 13. Global PiezoMEMS market forecast Actuators (2024-2035), BILLIONS USD.               105
  • Figure 14. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD.     110
  • Figure 15. Global PiezoMEMS market forecast in Transducers (2024-2035) BILLIONS USD.     115
  • Figure 16. PiezoMEMS Market supply chain.             118
  • Figure 17. Bosch - BMI270 6-axis IMU.          163
  • Figure 18. Broadcom - FBAR RF Filter Products.     164
  • Figure 19. Butterfly Network - Butterfly iQ+ Ultrasound System. 165
  • Figure 20. Fujifilm Dimatix - Samba Printhead Technology.             172
  • Figure 21. Infineon - XENSIV™ MEMS Microphones.             189
  • Figure 22. Murata - SAW Filter Products.     205
  • Figure 23. poLight - TLens® Autofocus Actuator.     218
  • Figure 24. Qualcomm - 3D Sonic Sensor (Ultrasonic Fingerprint).             221
  • Figure 25. Qorvo - BAW Filter Portfolio.         222
  • Figure 26. STMicroelectronics - MEMS microphones (MP23DB01HP).   241
  • Figure 27. TDK InvenSense - ICP-10125 High-Performance Pressure Sensor.     242
  • Figure 28. USound - MEMS Speaker Technology.    246
  • Figure 29. xMEMS - Montara Microspeaker.               249

 

 

 

Global PiezoMEMS Market 2025-2035
Global PiezoMEMS Market 2025-2035
PDF download/by email.

Global PiezoMEMS Market 2025-2035
Global PiezoMEMS Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com