Per- and Polyfluoroalkyl Substances (PFAS) and Alternatives Global Market 2024

0

  • Published: July 2024
  • Pages: 220
  • Tables: 27
  • Figures: 10

 

PFAS, otherwise known as ‘forever chemicals,’ are widespread in an array of everyday products.  PFAS are a growing concern due to their environmental persistence and potential health risks. These manufactured chemicals are widespread and found in numerous everyday products like non-stick cookware, water repellents, stain-resistant fabrics, firefighting foams, and food packaging, where they are valued due to their high performance. There are more than 3000 types of PFAS commercially available on the world market today. However, regulatory restrictions on PFAS are gaining momentum. Notably, California (by 2025) and New York (by 2024) have taken the lead by implementing bans, and the European Union is actively pushing for a similar restriction. As a result, various alternatives to PFAS across different industries and applications are being developed in response to growing environmental concerns and regulatory pressures surrounding PFAS use.

This extensive market research report provides a thorough analysis of the global Per- and Polyfluoroalkyl Substances (PFAS) market and the emerging alternatives sector. As environmental concerns and regulatory pressures mount, this report offers crucial insights into the shifting landscape of PFAS usage, alternatives development, and market dynamics across various industries. Report contents include:

  • Types of PFAS, chemical structure, properties, historical development, and types.
  • Environmental and health concerns associated with PFAS, including their persistence, bioaccumulation, toxicity, and widespread environmental contamination.
  • Comprehensive overview of the global regulatory landscape including international agreements, European Union regulations, United States policies, and Asian regulatory frameworks. 
  • PFAS usage in key sectors such as semiconductors, textiles and clothing, food packaging, paints and coatings, ion exchange membranes, energy, low-loss materials for 5G, cosmetics, firefighting foam, automotive, electronics, and medical devices. Each industry section provides an overview of PFAS applications, regulatory implications, and emerging alternatives.
  • PFAS alternatives including PFAS-free release agents, non-fluorinated surfactants and dispersants, PFAS-free water and oil-repellent materials, fluorine-free liquid-repellent surfaces, and PFAS-free colorless transparent polyimide.
  • Methods for PFAS degradation and elimination, with a focus on bio-friendly approaches such as phytoremediation, microbial degradation, enzyme-based degradation, and other green technologies. 
  • Market analysis and future outlook including a global PFAS market overview, regional market analysis, and market segmentation by industry.
  • Assessment of challenges and barriers to PFAS substitution, including technical performance gaps, cost considerations, and regulatory uncertainty. It offers future market projections, providing valuable insights for stakeholders across the PFAS and alternatives value chain.
  • Profiles of over 500 companies developing PFAS alternatives and PFAS degradation chemicals.

 

This report is an essential resource for:

  • Chemical manufacturers and suppliers
  • Environmental consultants and remediation specialists
  • Regulatory bodies and policymakers
  • Industry executives in sectors utilizing PFAS
  • Investors and financial analysts focusing on chemical and environmental markets
  • Research institutions and academics studying PFAS and alternatives
  • Sustainability professionals and environmental NGOs

 

 

1             EXECUTIVE SUMMARY            

  • 1.1        Introduction to PFAS 13
  • 1.2        Definition and Overview of PFAS       14
    • 1.2.1    Chemical Structure and Properties 15
    • 1.2.2    Historical Development and Use      16
  • 1.3        Types of PFAS 17
    • 1.3.1    Non-polymeric PFAS 18
      • 1.3.1.1 Long-Chain PFAS        19
      • 1.3.1.2 Short-Chain PFAS       19
    • 1.3.2    Polymeric PFAS            20
      • 1.3.2.1 Fluoropolymers (FPs)               20
      • 1.3.2.2 Side-chain fluorinated polymers:     21
      • 1.3.2.3 Perfluoropolyethers   21
  • 1.4        Properties and Applications of PFAS              22
    • 1.4.1    Water and Oil Repellency       22
    • 1.4.2    Thermal and Chemical Stability        23
    • 1.4.3    Surfactant Properties               24
  • 1.5        Environmental and Health Concerns             25
    • 1.5.1    Persistence in the Environment         26
    • 1.5.2    Bioaccumulation        26
    • 1.5.3    Toxicity and Health Effects    27
    • 1.5.4    Environmental Contamination           29
  • 1.6        PFAS Alternatives        30

 

2             GLOBAL REGULATORY LANDSCAPE              

  • 2.1        Impact of growing PFAS regulation  32
  • 2.2        International Agreements      32
  • 2.3        European Union Regulations               35
  • 2.4        United States Regulations     39
  • 2.5        Asian Regulations       40
  • 2.6        Global Regulatory Trends and Outlook         42

 

3             INDUSTRY-SPECIFIC PFAS USAGE  

  • 3.1        Semiconductors          44
    • 3.1.1    Overview           44
    • 3.1.2    Importance of PFAS   44
    • 3.1.3    Photolithography        45
    • 3.1.4    Etching               47
    • 3.1.5    Cleaning           47
    • 3.1.6    Interconnects and Packaging Materials       47
    • 3.1.7    Heat Transfer Fluids  47
    • 3.1.8    Thermal management for data centers         47
    • 3.1.9    Environmental Impact and Life Cycle Analysis       48
    • 3.1.10 Regulatory Implications for Semiconductors           49
    • 3.1.11 Alternatives to PFAS  50
      • 3.1.11.1            Alkyl Polyglucoside and Polyoxyethylene Surfactants        50
      • 3.1.11.2            Non-PFAS Etching Solutions               51
      • 3.1.11.3            PTFE-Free Sliding Materials  52
      • 3.1.11.4            Metal oxide-based materials               52
      • 3.1.11.5            Fluoropolymer Alternatives   53
  • 3.2        Textiles and Clothing 54
    • 3.2.1    Overview           54
    • 3.2.2    PFAS in Water-Repellent Materials  55
    • 3.2.3    Stain-Resistant Treatments  56
    • 3.2.4    Regulatory Impact on Water-Repellent Clothing    57
    • 3.2.5    Industry Initiatives and Commitments         57
    • 3.2.6    Alternatives to PFAS  59
      • 3.2.6.1 Enhanced surface treatments            59
      • 3.2.6.2 Non-fluorinated treatments 60
      • 3.2.6.3 Biomimetic approaches         60
      • 3.2.6.4 Nano-structured surfaces    61
      • 3.2.6.5 Wax-based additives 62
      • 3.2.6.6 Plasma treatments     63
      • 3.2.6.7 Sol-gel coatings            64
      • 3.2.6.8 Superhydrophobic coatings 65
      • 3.2.6.9 Companies     67
  • 3.3        Food Packaging           69
    • 3.3.1    Sustainable packaging            69
      • 3.3.1.1 PFAS in Grease-Resistant Packaging             69
      • 3.3.1.2 Regulatory Trends in Food Contact Materials           71
    • 3.3.2    Alternatives to PFAS  72
      • 3.3.2.1 Biobased materials    72
      • 3.3.2.2 PFAS-free coatings for food packaging         87
      • 3.3.2.3 Companies     87
  • 3.4        Paints and Coatings  91
    • 3.4.1    Overview           91
    • 3.4.2    Applications   92
    • 3.4.3    Alternatives to PFAS  96
      • 3.4.3.1 Silicon-Based 96
      • 3.4.3.2 Hydrocarbon-Based  96
      • 3.4.3.3 Nanomaterials              97
      • 3.4.3.4 Plasma-Based Surface Treatments 98
      • 3.4.3.5 Inorganic Alternatives               99
      • 3.4.3.6 Companies     99
  • 3.5        Ion Exchange membranes     101
    • 3.5.1    Overview           101
    • 3.5.2    Proton Exchange Membranes             101
    • 3.5.3    Catalyst Coated Membranes              103
    • 3.5.4    Membranes in Redox Flow Batteries               103
    • 3.5.5    Alternatives to PFAS  104
      • 3.5.5.1 Hydrocarbon material              105
      • 3.5.5.2 Nanocellulose               106
      • 3.5.5.3 AEM fuel cells                107
      • 3.5.5.4 Metal-organic frameworks    109
      • 3.5.5.5 Companies     111
  • 3.6        Energy (excluding fuel cells) 112
    • 3.6.1    Overview           112
    • 3.6.2    Solar Panels   113
    • 3.6.3    Wind Turbines:              114
    • 3.6.4    Lithium-Ion Batteries:              115
    • 3.6.5    Alternatives to PFAS  115
      • 3.6.5.1 Solar    115
      • 3.6.5.2 Wind Turbines               117
      • 3.6.5.3 Lithium-Ion Batteries                121
  • 3.7        Low-loss materials for 5G      126
    • 3.7.1    Overview           126
    • 3.7.2    PTFE in 5G        127
    • 3.7.3    Alternatives to PFAS  129
  • 3.8        Cosmetics       131
    • 3.8.1    Overview           131
    • 3.8.2    Use in cosmetics         132
    • 3.8.3    Alternatives to PFAS  133
      • 3.8.3.1 Short chain PFASs      133
      • 3.8.3.2 Non-fluorinated chemical alternatives         134
  • 3.9        Firefighting Foam        135
    • 3.9.1    Overview           135
    • 3.9.2    Aqueous Film-Forming Foam (AFFF)              135
    • 3.9.3    Environmental Contamination from AFFF Use        136
    • 3.9.4    Regulatory Pressures and Phase-Out Initiatives     136
    • 3.9.5    Alternatives to PFAS  137
  • 3.10     Automotive      138
    • 3.10.1 Overview           138
    • 3.10.2 PFAS in Lubricants and Hydraulic Fluids     138
    • 3.10.3 Use in Fuel Systems and Engine Components        139
    • 3.10.4 Electric Vehicle             140
      • 3.10.4.1            PFAS in Electric Vehicles        140
      • 3.10.4.2            High-Voltage Cables 140
      • 3.10.4.3            Refrigerants    142
      • 3.10.4.4            Immersion Cooling for Li-ion Batteries          143
    • 3.10.5 Alternatives to PFAS  144
  • 3.11     Electronics      146
    • 3.11.1 Overview           146
    • 3.11.2 PFAS in Printed Circuit Boards           147
    • 3.11.3 Cable and Wire Insulation     148
    • 3.11.4 Regulatory Challenges for Electronics Manufacturers       149
    • 3.11.5 Alternatives to PFAS  149
      • 3.11.5.1            Wires and cables         149
      • 3.11.5.2            Coating              150
      • 3.11.5.3            Electronic components          151
      • 3.11.5.4            Sealing and lubricants             152
      • 3.11.5.5            Cleaning           153
  • 3.12     Medical Devices           154
    • 3.12.1 Overview           155
    • 3.12.2 PFAS in Implantable Devices               155
    • 3.12.3 Diagnostic Equipment Applications               156
    • 3.12.4 Balancing Safety and Performance in Regulations               157
    • 3.12.5 Alternatives to PFAS  158
  • 3.13     Green hydrogen            159
    • 3.13.1 Electrolyzers   160

 

4             PFAS ALTERNATIVES 

  • 4.1        Market drivers                160
  • 4.2        PFAS-Free Release Agents    162
    • 4.2.1    Silicone-Based Alternatives  162
    • 4.2.2    Hydrocarbon-Based Solutions           163
    • 4.2.3    Performance Comparisons  164
  • 4.3        Non-Fluorinated Surfactants and Dispersants       166
    • 4.3.1    Bio-Based Surfactants            166
    • 4.3.2    Silicon-Based Surfactants    168
    • 4.3.3    Hydrocarbon-Based Surfactants      168
  • 4.4        PFAS-Free Water and Oil-Repellent Materials          169
    • 4.4.1    Dendrimers and Hyperbranched Polymers                169
    • 4.4.2    PFA-Free Durable Water Repellent (DWR) Coatings             170
    • 4.4.3    Silicone-Based Repellents    171
    • 4.4.4    Nano-Structured Surfaces    172
  • 4.5        Fluorine-Free Liquid-Repellent Surfaces     174
    • 4.5.1    Superhydrophobic Coatings 174
    • 4.5.2    Omniphobic Surfaces              175
    • 4.5.3    Slippery Liquid-Infused Porous Surfaces (SLIPS)   177
  • 4.6        PFAS-Free Colorless Transparent Polyimide             179
    • 4.6.1    Novel Polymer Structures      179
    • 4.6.2    Applications in Flexible Electronics 180

 

5             PFAS DEGRADATION AND ELIMINATION     

  • 5.1        Current methods for PFAS degradation and elimination   184
  • 5.2        Bio-friendly methods                185
    • 5.2.1    Phytoremediation       185
    • 5.2.2    Microbial Degradation             187
    • 5.2.3    Enzyme-Based Degradation 188
    • 5.2.4    Mycoremediation        189
    • 5.2.5    Biochar Adsorption    190
    • 5.2.6    Green Oxidation Methods     191
    • 5.2.7    Bio-based Adsorbents             192
    • 5.2.8    Algae-Based Systems              194
  • 5.3        Companies     196

 

6             MARKET ANALYSIS AND FUTURE OUTLOOK             

  • 6.1        Current Market Size and Segmentation        198
    • 6.1.1    Global PFAS Market Overview            199
    • 6.1.2    Regional Market Analysis      199
    • 6.1.3    Market Segmentation by Industry    200
  • 6.2        Impact of Regulations on Market Dynamics             201
    • 6.2.1    Shift from Long-Chain to Short-Chain PFAS              201
    • 6.2.2    Growth in PFAS-Free Alternatives Market    202
    • 6.2.3    Regional Market Shifts Due to Regulatory Differences       203
  • 6.3        Emerging Trends and Opportunities               204
    • 6.3.1    Green Chemistry Innovations             204
    • 6.3.2    Circular Economy Approaches          205
    • 6.3.3    Digital Technologies for PFAS Management              206
  • 6.4        Challenges and Barriers to PFAS Substitution         207
    • 6.4.1    Technical Performance Gaps              207
    • 6.4.2    Cost Considerations 208
    • 6.4.3    Regulatory Uncertainty            209
  • 6.5        Future Market Projections     210

 

7             RESEARCH METHODOLOGY              213

 

8             REFERENCES 214

 

List of Tables

  • Table 1. Established applications of PFAS. 13
  • Table 2. Non-polymeric PFAS.            14
  • Table 3. Chemical structure and physiochemical properties of various perfluorinated surfactants.  15
  • Table 4. Applications of PFAs.            22
  • Table 5. PFAS surfactant properties.               24
  • Table 6. List of PFAS alternatives.     30
  • Table 7. International PFAS regulations.       32
  • Table 8. Common PFAS and their regulation.           34
  • Table 9. European Union Regulations.          35
  • Table 10. United States Regulations.             39
  • Table 11. PFAS Regulations in Asia-Pacific Countries.       40
  • Table 12. Identified uses of PFAS in semiconductors.        44
  • Table 13. Initiatives by outdoor clothing companies to phase out PFCs.                58
  • Table 14. Companies developing PFAS alternatives for textiles.  67
  • Table 15. Companies developing PFAS alternatives for food packaging.               88
  • Table 16. Applications and purpose of PFAS in paints and coatings.        92
  • Table 17. Companies developing PFAS alternatives for paints and coatings.      100
  • Table 18. Companies developing PFA alternatives for fuel cells. 111
  • Table 19. 6. Identified uses of PFASs in the energy sector.               112
  • Table 20. Alternatives to PFAS for low-loss applications in 5G      129
  • Table 21. Application of PFAS in electric vehicles. 140
  • Table 22. Alternatives to PFAS in the automotive sector.   144
  • Table 23. Use of PFAS in the electronics sector.     146
  • Table 24. Alternatives to PFAS in medical devices.               159
  • Table 25. Readiness level of PFAS alternatives.       160
  • Table 26. Current methods for PFAS elimination . 184
  • Table 27. Companies developing processes for PFA degradation.             196

 

List of Figures

  • Figure 1. Types of PFAS.          18
  • Figure 2. Structure of PFAS-based polymer finishes.          19
  • Figure 3. Water and Oil Repellent Textile Coating. 22
  • Figure 4. Main PFAS exposure route.              25
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    28
  • Figure 6. The photoresist application process in photolithography.          46
  • Figure 7. Superhydrophobic coating.             65
  • Figure 8. Common examples of food packaging where grease and water resistance are            70
  • Figure 9. Main functions of PFASs in cosmetics.    132
  • Figure 10. Slippery Liquid-Infused Porous Surfaces (SLIPS).          177

 

 

 

Per- and Polyfluoroalkyl Substances (PFAS) and Alternatives Global Market 2024
Per- and Polyfluoroalkyl Substances (PFAS) and Alternatives Global Market 2024
PDF download/by email.

Per- and Polyfluoroalkyl Substances (PFAS) and Alternatives Global Market 2024
Per- and Polyfluoroalkyl Substances (PFAS) and Alternatives Global Market 2024
PDF and Print Edition (including delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.