The Global Aerogels Market 2025-2035

0

cover

cover

  • Published: February 2025
  • Pages: 208
  • Tables: 56
  • Figures: 44

 

The global aerogel market has experienced remarkable growth, transforming from a niche specialty material into a significant commercial sector.  This growth is fueled by aerogels' exceptional properties, including ultra-low thermal conductivity (as low as 0.015 W/m·K), extreme lightweight nature (80-150 kg/m³), high porosity, and fire resistance. Silica aerogels continue to dominate, primarily serving oil and gas, building insulation, and industrial applications. However, polymer-based aerogels are showing accelerated growth rates due to enhanced flexibility and processability, making them increasingly attractive for transportation, apparel, and aerospace applications. Carbon aerogels and bio-based variants are emerging as important segments for specialized applications in energy storage, catalysis, and sustainable materials.

Regionally, North America currently leads in revenue generation, though China is rapidly expanding manufacturing capacity. The European market remains strong, driven by stringent building insulation regulations and sustainability initiatives. The fastest-growing application sector is electric vehicle battery thermal management, expanding at over 40% annually as manufacturers adopt aerogel solutions for thermal runaway prevention and fire protection. The competitive landscape has evolved significantly, with established players expanding capacity while Chinese manufacturers such as Guangdong Alison and IBIH Advanced Materials rapidly scale up production. Smaller specialized producers have emerged focusing on niche applications and advanced formulations.

Technology advancements have been pivotal, with ambient pressure drying techniques reducing production costs compared to traditional supercritical methods. Manufacturing innovations including continuous roll-to-roll processes have improved scalability, while new hybrid formulations and composite structures have expanded performance capabilities. While high production costs and processing challenges persist for certain applications, these barriers are progressively diminishing as manufacturing scale increases. Market drivers including global energy efficiency regulations, building codes, EV safety standards, and industrial decarbonization initiatives continue to strengthen the value proposition for aerogel adoption across multiple sectors.

Looking forward, the aerogel market is positioned for continued strong growth as production costs decrease further and new applications emerge, particularly in transportation, sustainable building materials, energy storage, and high-performance industrial applications. The trend toward lightweight, high-efficiency materials across industries provides a strong foundation for aerogels' expanding market presence.

The Global Aerogels Market 2025-2035 provides an in-depth analysis of the rapidly expanding global aerogels industry, with detailed segmentation by aerogel type, application sector, and geographic region. The executive summary covers aerogel properties, market position, drivers, production capacities, and technology challenges. The introduction section presents aerogel classification, commercially available types, and analysis of silica, polymer, metal oxide, organic, carbon, and hybrid aerogel variants. Production methodology content includes manufacturing processes from sol-gel synthesis through aging, surface modification, and drying techniques with cost assessments and manufacturing process evaluations.

Application sector analysis covers fifteen markets with drivers, aerogel types, performance advantages, technology readiness levels, and growth projections for building insulation, oil and gas, EV batteries, energy storage, biomedical applications, and textiles. Regional analysis examines China's expanding production capacity compared to North America and Europe's focus on high-value applications. The competitive landscape section contains profiles of 45 aerogel manufacturers.

The report features 40 tables and 45 figures showing market trends, material properties, manufacturing processes, and performance metrics, plus patent analysis tracking innovation activity. The forecasts through 2035 segment the market by aerogel type, application sectors, and geographical regions for precise market sizing and opportunity identification in this advanced materials sector.

Report Contents include: 

  • Aerogel properties
  • Applications overview
  • Competitive landscape
  • Market drivers and trends
  • Production capacities
  • Technology challenges
  • Market forecasts 2021-2035
  • Types of Aerogels
    • Silica aerogels
    • Polymer-based aerogels
    • Metal oxide aerogels
    • Organic and biobased aerogels
    • Carbon aerogels
    • 3D printed aerogels
    • Hybrid and composite aerogels
  • Production Methods
  • Markets and Applications
    • Oil and gas
    • Building and construction
    • Energy storage
    • Biomedical
    • Cold-chain packaging
    • Electronics and telecommunications
    • Filtration and separation
    • Textiles
    • Food
    • Catalysts
    • Paint and coatings
    • Aerospace and defense
    • Cosmetics
    • Automotive and EV batteries
    • Other applications
  • Patent Analysis
    • Innovation trends
    • Key patent holders
  • Company Profiles (50 manufacturers)
    • Established market leaders
    • Emerging specialists
    • Regional manufacturers. Companies profiled include ABIS Aerogel Co., Active Aerogels, Aerofybers Technologies SL, Aerogel Core Ltd, Aerogel Coating Technologies, aerogel-it GmbH, Aerogel Technologies LLC, AeroShield Materials, Armacell International S.A., Aspen Aerogels Inc., BASF SE, Blueshift Materials Inc., Cabot Corporation, Cellutech AB (Stora Enso), Dragonfly Insulation, Elisto GmbH, Enersens SAS, Fibenol, Fuji Silysia Chemical Ltd., Gelanggang Kencana Sdn. Bhd., Green Earth Aerogel Technologies, Guangdong Alison Hi-Tech Co. Ltd., Hebei Jinna Technology Co. Ltd., Hokuetsu Toyo Fibre Co. Ltd., IBIH Advanced Materials, Keey Aerogel and more....
  • Market Forecasts 2021-2035
    • By aerogel type
    • By application market
    • By geographic region

 

The Global Aerogels Market 2025-2035
The Global Aerogels Market 2025-2035
PDF download/by email.

The Global Aerogels Market 2025-2035
The Global Aerogels Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com

1             EXECUTIVE SUMMARY            13

  • 1.1        Aerogel properties      13
  • 1.2        Aerogel applications 15
  • 1.3        Competitive factors in the aerogels market               17
  • 1.4        Market drivers and trends      17
  • 1.5        Aerogel producers and capacities   20
  • 1.6        Market and technology challenges  22
  • 1.7        Market size and forecast 2021-2035              23
    • 1.7.1    By aerogel type              23
    • 1.7.2    By market         24
    • 1.7.3    By region           25

 

2             INTRODUCTION          28

  • 2.1        Aerogels            28
    • 2.1.1    Origin of Aerogels        28
    • 2.1.2    Classification 28
    • 2.1.3    Aerogel Forms               30
    • 2.1.4    Commercially available aerogels     32
  • 2.2        Silica aerogels               33
    • 2.2.1    Properties         34
      • 2.2.1.1 Thermal conductivity                35
      • 2.2.1.2 Mechanical     35
      • 2.2.1.3 Silica aerogel precursors        35
    • 2.2.2    Products           35
      • 2.2.2.1 Monoliths         35
      • 2.2.2.2 Powder               36
      • 2.2.2.3 Granules           36
      • 2.2.2.4 Blankets            38
      • 2.2.2.5 Aerogel boards             39
      • 2.2.2.6 Aerogel renders            39
      • 2.2.2.7 Silica aerogel from sustainable feedstocks               40
      • 2.2.2.8 Silica composite aerogels     40
        • 2.2.2.8.1           Organic crosslinkers 40
        • 2.2.2.8.2           Commercial activity  40
    • 2.2.3    Cost     43
    • 2.2.4    Main players   44
  • 2.3        Aerogel-like polymer foams 45
    • 2.3.1    Properties         45
    • 2.3.2    Applications for aerogel-like polymer foams include:         46
  • 2.4        Metal oxide aerogels 46
  • 2.5        Organic aerogels         47
    • 2.5.1    Polymer-based aerogels         47
    • 2.5.2    Biobased aerogels (bio-aerogels)     49
      • 2.5.2.1 Overview           49
      • 2.5.2.2 Sustainable Feedstocks         49
        • 2.5.2.2.1           Silica aerogels derived from waste sources               50
        • 2.5.2.2.2           Commercial development    50
        • 2.5.2.2.3           Textile waste into high-value aerogel materials       51
      • 2.5.2.3 Cellulose aerogels     53
        • 2.5.2.3.1           Cellulose nanofiber (CNF) aerogels                53
        • 2.5.2.3.2           Cellulose nanocrystal aerogels         54
        • 2.5.2.3.3           Bacterial nanocellulose aerogels     54
        • 2.5.2.3.4           Lignin aerogels              54
        • 2.5.2.3.5           Alginate aerogels         55
        • 2.5.2.3.6           Starch aerogels            55
        • 2.5.2.3.7           Chitosan aerogels      56
        • 2.5.2.3.8           Protein aerogels           56
          • 2.5.2.3.8.1      Albumin aerogels        57
          • 2.5.2.3.8.2      Casein aerogels           57
          • 2.5.2.3.8.3      Gelatin aerogels           57
        • 2.5.2.3.9           Silk fiber            58
    • 2.5.3    Carbon aerogels          58
      • 2.5.3.1 Carbon nanotube aerogels   60
      • 2.5.3.2 Graphene and graphite aerogels       61
  • 2.6        3D printed aerogels   62
    • 2.6.1    Carbon nitride               64
      • 2.6.1.1 Gold     64
      • 2.6.1.2 Cellulose          64
      • 2.6.1.3 Graphene oxide            65
  • 2.7        Hybrid and composite aerogels        65
    • 2.7.1    Mixed oxide aerogels 66
    • 2.7.2    Metal oxide aerogel composites       66
    • 2.7.3    Carbon-based aerogel composites 67

 

3             PRODUCTION METHODS      68

  • 3.1        Overview           68
  • 3.2        Sol-gel process             70
  • 3.3        3D printing of aerogels             71
  • 3.4        Drying methods            72
    • 3.4.1    Overview of drying methods 73
    • 3.4.2    Supercritical Drying   74
      • 3.4.2.1 Closed loop    74
      • 3.4.2.2 Autoclave loading       75
    • 3.4.3    Ambient Pressure Drying       75
    • 3.4.4    Rapid Supercritical Extraction (RSCE)          80
    • 3.4.5    Advantages and disadvantages        80
  • 3.5        Costs  82

 

4             MARKETS AND APPLICATIONS FOR AEROGELS     87

  • 4.1        Competitive landscape          87
  • 4.2        Oil and Gas     87
    • 4.2.1    Overview           87
    • 4.2.2    Applications   88
      • 4.2.2.1 Refineries         89
      • 4.2.2.2 Pipelines           89
  • 4.3        Building and Construction    92
    • 4.3.1    Overview           92
    • 4.3.2    Types of sustainable insulation materials   93
    • 4.3.3    Applications   94
      • 4.3.3.1 Panels and blankets  95
      • 4.3.3.2 Plaster, concrete and bricks 95
      • 4.3.3.3 Coatings and paints  96
      • 4.3.3.4 Windows/Daylighting               99
      • 4.3.3.5 Industrial insulation  102
  • 4.4        Energy Storage              103
    • 4.4.1    Overview           103
    • 4.4.2    Applications   103
      • 4.4.2.1 Silicon anodes              104
      • 4.4.2.2 Li-S batteries  104
      • 4.4.2.3 Electrodes        105
      • 4.4.2.4 Thermal insulation     106
      • 4.4.2.5 Supercapacitors          107
  • 4.5        Biomedical      108
    • 4.5.1    Overview           108
    • 4.5.2    Applications   108
      • 4.5.2.1 Drug delivery  108
      • 4.5.2.2 Tissue engineering      109
      • 4.5.2.3 Medical implants        110
      • 4.5.2.4 Wound care    111
  • 4.6        Cold-Chain Packaging            112
    • 4.6.1    Overview           112
  • 4.7        Electronics and Telecommunications           113
    • 4.7.1    Overview           113
    • 4.7.2    Applications   114
      • 4.7.2.1 EMI Shielding 115
      • 4.7.2.2 Thermal insulation     115
      • 4.7.2.3 5G         116
        • 4.7.2.3.1           Antenna modules       116
        • 4.7.2.3.2           High-performance antenna substrates        117
        • 4.7.2.3.3           Advanced low-loss materials              118
  • 4.8        Filtration, Separation, and Sorption                119
    • 4.8.1    Overview           119
    • 4.8.2    Applications   120
      • 4.8.2.1 Sorbents for liquids, hazardous ions (heavy metal ions) (e.g., water treatment)               120
      • 4.8.2.2 Sorbent for oil spills  121
      • 4.8.2.3 Sorbents for gases (CO2, hazardous gases, VOC) 121
  • 4.9        Textiles               122
    • 4.9.1    Overview           122
    • 4.9.2    Applications   122
      • 4.9.2.1 Winter sports apparel              124
      • 4.9.2.2 Consumer apparel     125
      • 4.9.2.3 Protective equipment               127
      • 4.9.2.4 Footwear applications             127
  • 4.10     Food    128
    • 4.10.1 Overview           128
  • 4.11     Catalysts          129
  • 4.12     Paint and Coatings     130
  • 4.13     Aerospace and Defence         130
    • 4.13.1 Overview           130
    • 4.13.2 Applications   133
  • 4.14     Cosmetics       137
    • 4.14.1 Overview           137
  • 4.15     Automotive      138
    • 4.15.1 Overview           138
    • 4.15.2 EV batteries     140
      • 4.15.2.1            Fire protection               140
      • 4.15.2.2            Thermal barriers          143
      • 4.15.2.3            Regulations     145
      • 4.15.2.4            Challenges      147
      • 4.15.2.5            Integration of aerogels with specialized foam materials   148
      • 4.15.2.6            Companies     148
  • 4.16     Other markets and applications       149

 

5             AEROGEL PATENTS    150

  • 5.1        Patent applications   150

 

6             AEROGEL COMPANY PROFILES        153 (50 company profiles)

 

7             RESEARCH SCOPE AND METHODOLOGY 201

  • 7.1        Report scope 201
  • 7.2        Research methodology           201

 

8             REFERENCES 202

 

Tables

  • Table 1. General properties and value of aerogels.               14
  • Table 2. Aerogel Thermal Conductivity and Density Benchmarking.         15
  • Table 3. Market drivers for aerogels.               17
  • Table 4.  Aerogel Manufacturer Production Capacity and Manufacturing Processes     21
  • Table 5. Planned aerogel production expansions. 21
  • Table 6. Market and technology challenges in aerogels.   22
  • Table 7. Aerogel Forecast 2021-2035 (Million USD), by aerogel type.        23
  • Table 8. Aerogel Forecast 2021-2035 by Markets (Million USD).   24
  • Table 9. Aerogel Manufacturers in China.   26
  • Table 10. Aerogel Forecast 2021-2035 by Region (Million USD).  27
  • Table 11. Aerogel Form Factors.        30
  • Table 12. Commercially Available Aerogel Products.          32
  • Table 13. Silica aerogel properties . 34
  • Table 14. Chemical precursors used to synthesize silica aerogels.           35
  • Table 15. Commercially available aerogel-enhanced blankets.   38
  • Table 16. Commercial Silica Composite Aerogels.               42
  • Table 17. Main manufacturers of silica aerogels and product offerings. 44
  • Table 18. Typical structural properties of metal oxide aerogels.  46
  • Table 19. Polymer aerogels companies.      48
  • Table 20. Types of biobased aerogels.           51
  • Table 21. Carbon aerogel companies.          60
  • Table 22. Synthesis methods-Aerogels synthesised, advantages and disadvantages. 69
  • Table 23. Silica Aerogel Powder Manufacturing Processes Using Ambient Drying.          76
  • Table 24. Drying methods for aerogel production. 78
  • Table 25. Advantages and disadvantages of drying methods.       80
  • Table 26. Silica Composite Aerogels - Cost Analysis.         83
  • Table 27. Cost Analysis by Aerogel Type.     85
  • Table 28. Market overview of aerogels in oil and gas-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 88
  • Table 29. Aerogel Products for Cryogenic Insulation.          91
  • Table 30. Market overview of aerogels in building and construction-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.             94
  • Table 31. Aerogel Materials for Building & Construction Applications.    97
  • Table 32. Aerogel Products for Windows/Daylighting.         99
  • Table 33. Market overview of aerogels in energy conversion and storage-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         103
  • Table 34. Market overview of aerogels in drug delivery-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 109
  • Table 35. Market overview of aerogels in tissue engineering-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 109
  • Table 36. Market overview of aerogels in medical implants-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 110
  • Table 37. Market overview of aerogels in wound care-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 111
  • Table 38. Market overview of aerogels in cold-chain packaging-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 112
  • Table 39. Market overview of aerogels in electronics and Telecommunications-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         113
  • Table 40. Aerogel Products for Electronic Appliances.       114
  • Table 41. Market overview of aerogels in filtration, separation, and sorption-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.         119
  • Table 42. Market overview of aerogels in textiles- market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.          127
  • Table 43. Market overview of aerogels in food- market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 128
  • Table 44. Market overview of aerogels in catalysts-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL.          129
  • Table 45. Market overview of aerogels in paints and coatings-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 130
  • Table 46. Market overview of aerogels in aerospace-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 133
  • Table 47. Market overview of aerogels in cosmetics-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 138
  • Table 48. Market overview of aerogels in automotive-market drivers, types of aerogels utilized, motivation for use of aerogels, applications, TRL. 139
  • Table 49. Properties of Aerogels and Other Fire Protection Materials.      140
  • Table 50. Types of Fire Protection Materials.             142
  • Table 51. Thermally Insulating Fire Protection Products for EVs. 143
  • Table 52. Comparison of Aerogels vs Other Fire Protection Materials.    143
  • Table 53. Comparison of Aerogel Fire Protection Materials for EV Batteries.       144
  • Table 54. Companies producing  Aerogels for EV Batteries.            148
  • Table 55. Other markets and applications for aerogels.    149
  • Table 56. Aerogel patents 2010-2024.          150

 

Figures

  • Figure 1. Classification of aerogels. 14
  • Figure 2. SLENTEX® thermal insulation.       16
  • Figure 3. Aerogel Forecast 2021-2035 (Million USD), by aerogel type.      24
  • Figure 4. Aerogel Forecast 2021-2035 by Markets (Million USD). 25
  • Figure 5. Aerogel Forecast 2021-2035 by Region (Million USD).   27
  • Figure 6. Main characteristics of aerogel type materials.  28
  • Figure 7. Classification of aerogels. 29
  • Figure 8. Canada Goose luxury footwear.   31
  • Figure 9. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                34
  • Figure 10. Monolithic aerogel.            36
  • Figure 11. Aerogel granules. 37
  • Figure 12. Internal aerogel granule applications.   37
  • Figure 13. Slentite.      44
  • Figure 14. Methods for producing bio-based aerogels.      53
  • Figure 15. Types of cellulose aerogel.            53
  • Figure 16. Lignin-based aerogels.     55
  • Figure 17. Fabrication routes for starch-based aerogels. 56
  • Figure 18. Schematic of silk fiber aerogel synthesis.           58
  • Figure 19. Graphene aerogel.              62
  • Figure 20. Commonly employed printing technologies for aerogels.        63
  • Figure 21. Schematic for direct ink writing of silica aerogels.        63
  • Figure 22. 3D printed aerogel.             64
  • Figure 23. Schematic of silica aerogels synthesis.                69
  • Figure 24. Formation of aerogels, cryogels and xerogels. 70
  • Figure 25. Aerogel engineering strategies.  71
  • Figure 26. 3D printed aerogels.          72
  • Figure 27. SEM images of the microstructures of (a) alginate and (b) pectin aerogels obtained by supercritical drying, (c) cellulose aerogels by freeze-drying, and (d) silica-cellulose composite aerogels by ambient drying.     73
  • Figure 28. Methods of gel drying.      73
  • Figure 29. Pyrogel insulation on a heat-exchange vessel in a petrochemical plant.        88
  • Figure 30. Aerogel construction applications.         92
  • Figure 31. Incorporation of aerogels into textiles.  124
  • Figure 32. Aerogel dust collector.     134
  • Figure 33. Thermal Conductivity Performance of ArmaGel HT.     162
  • Figure 34. A pencil resting on a PyroThin thermal barrier to show its comparative thickness.  164
  • Figure 35. SLENTEX® roll (piece).      165
  • Figure 36. CNF gel.     178
  • Figure 37. Block nanocellulose material.    179
  • Figure 38. Keey Aerogel.          181
  • Figure 39. Fire-resistance in Keey Aerogel. 181
  • Figure 40. Melodea CNC suspension.           185
  • Figure 41. HIP AERO paint.   188
  • Figure 42. Insulation of various aerogel fibres illustrated using the example of a cushion,        191
  • Figure 43. Sunthru Aerogel pane.     194
  • Figure 44. Quartzene®.             196

 

 

 

The Global Aerogels Market 2025-2035
The Global Aerogels Market 2025-2035
PDF download/by email.

The Global Aerogels Market 2025-2035
The Global Aerogels Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com