The Global Market for Advanced Carbon Materials 2022-2032

0

Carbon fibers, Iso-graphite, Graphene, Carbon nanotubes and carbon nanofibers, carbon spheres, 2D materials, Fullerenes, Nanodiamonds, Graphene quantum dots, Carbon quantum dots, Carbon Foam and Diamond-like carbon (DLC) coatings.

Published July 2022 | 703 pages, 75 tables, 118 figures | Download table of contents

Advanced Carbon Materials such as carbon fiber, carbon foams, graphene, carbon nanotubes, etc., possess unique mechanical, electrical, biological and chemical properties that have led to a variety of applications in electronics, energy storage, catalysis, filtration and sensing. Advanced Carbon Materials covered include: 

  • Carbon fibers.
  • Iso-graphite.
  • Graphene.
  • Carbon nanotubes and carbon nanofibers. 
  • Carbon spheres.
  • Carbon cloth. 
  • 2D materials.
  • Fullerenes.
  • Nanodiamonds.
  • Carbon quantum dots.
  • Graphene quantum dots.
  • Carbon Foam.
  • Diamond-like carbon (DLC) coatings.

 

Report contents include:

  • Market drivers and trends.
  • Properties and synthesis methods.
  • Market segment analysis. Markets covered include composites, electrochemical energy storage devices (batteries and supercapacitors), sensors, thermal management, adsorption, electromagnetic shielding, catalyst support, sensors and more. 
  • Price and price drivers.
  • Market consumption of advanced carbon materials, by type. 
  • More than 600 company profiles. Companies profiled include Hexcel Corporation, Mitsubishi Chemical Carbon Fiber and Composites, Inc., Carbitex, LLC, Teijin, UMATEX, Ibiden Co., Ltd., Mersen, Nippon Techno-Carbon Co., Ltd., Cabot Corporation, Graphenea, Haydale Graphene Industries, Nanocyl SA, OCSiAl and many more. 

1              THE ADVANCED CARBON MATERIALS MARKET   31

 

2              CARBON FIBERS 32

  • 2.1          Market drivers and trends            32
  • 2.2          Markets for carbon fibers             33
    • 2.2.1      Composites        34
      • 2.2.1.1   Aerospace          34
      • 2.2.1.2   Wind energy      34
      • 2.2.1.3   Sports   34
      • 2.2.1.4   Automotive        34
      • 2.2.1.5   Pressure vessels               35
  • 2.3          Carbon fiber producers 35
    • 2.3.1      Production capacities     35
  • 2.4          Global demand 2018-2032, metric tonnes            37
  • 2.5          Company profiles             39 (18 company profiles)

 

3              ISOSTATIC/ISOTROPIC GRAPHITE (ISO-GRAPHITE)              54

  • 3.1          Properties           54
  • 3.2          Applications       56
  • 3.3          Production capacities     57
  • 3.4          Global demand 2018-2032, metric tonnes            57
  • 3.5          Company profiles             58 (16 company profiles)

 

4              GRAPHENE         71

  • 4.1          Types of graphene           71
  • 4.2          Properties           72
  • 4.3          Graphene market challenges      73
  • 4.4          Graphene producers      74
    • 4.4.1      Production capacities     74
  • 4.5          Price and price drivers   77
    • 4.5.1      Pristine graphene flakes pricing/CVD graphene  79
    • 4.5.2      Few-Layer graphene pricing        81
    • 4.5.3      Graphene nanoplatelets pricing 81
    • 4.5.4      Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing               82
    • 4.5.5      Multilayer graphene (MLG) pricing           84
    • 4.5.6      Graphene ink     85
  • 4.6          Global demand 2018-2032, tons 85
    • 4.6.1      By market           91
    • 4.6.2      By region             92
      • 4.6.2.1   Asia-Pacific         92
      • 4.6.2.2   North America   95
      • 4.6.2.3   Europe 97
  • 4.7          Company profiles             99 (336 company profiles)

 

5              CARBON NANOTUBES    377

  • 5.1          Properties           378
    • 5.1.1      Comparative properties of CNTs 379
  • 5.2          Multi-walled carbon nanotubes (MWCNTs)          379
    • 5.2.1      Applications and TRL       380
    • 5.2.2      Producers           384
      • 5.2.2.1   Production capacities     384
    • 5.2.3      Price and price drivers   385
    • 5.2.4      Global demand 2018-2032, tons 387
    • 5.2.5      Company profiles             390 (131 company profiles)
  • 5.3          Single-walled carbon nanotubes (SWCNTs)           497
    • 5.3.1      Properties           497
    • 5.3.2      Applications       498
    • 5.3.3      Production capacities     500
    • 5.3.4      Company profiles             502 (16 company profiles)
  • 5.4          Other types        523
    • 5.4.1      Double-walled carbon nanotubes (DWNTs)          523
      • 5.4.1.1   Properties           523
      • 5.4.1.2   Applications       523
    • 5.4.2      Vertically aligned CNTs (VACNTs)              524
      • 5.4.2.1   Properties           524
      • 5.4.2.2   Applications       524
    • 5.4.3      Few-walled carbon nanotubes (FWNTs) 525
      • 5.4.3.1   Properties           525
      • 5.4.3.2   Applications       525
    • 5.4.4      Carbon Nanohorns (CNHs)           525
      • 5.4.4.1   Properties           525
      • 5.4.4.2   Applications       526
    • 5.4.5      Carbon Onions  526
      • 5.4.5.1   Properties           526
      • 5.4.5.2   Applications       527
    • 5.4.6      Boron Nitride nanotubes (BNNTs)            527
      • 5.4.6.1   Properties           527
      • 5.4.6.2   Applications       528
      • 5.4.6.3   Production          529

 

6              CARBON NANOFIBERS   530

  • 6.1          Properties           530
  • 6.2          Synthesis             530
    • 6.2.1      Chemical vapor deposition           530
    • 6.2.2      Electrospinning 530
    • 6.2.3      Template-based               531
    • 6.2.4      From biomass    531
  • 6.3          Markets               532
    • 6.3.1      Batteries              532
    • 6.3.2      Supercapacitors 532
    • 6.3.3      Fuel cells              532
    • 6.3.4      CO2 capture       533
  • 6.4          Companies         534

 

7              OTHER 2D MATERIALS   541

  • 7.1          2D MATERIALS PRODUCTION METHODS 543
    • 7.1.1      Top-down exfoliation     543
    • 7.1.2      Bottom-up synthesis      544
  • 7.2          HEXAGONAL BORON-NITRIDE (h-BN)      544
    • 7.2.1      Properties           545
    • 7.2.2      Applications and markets             546
      • 7.2.2.1   Electronics          546
      • 7.2.2.2   Fuel cells              546
      • 7.2.2.3   Adsorbents        546
      • 7.2.2.4   Photodetectors 546
      • 7.2.2.5   Textiles 546
      • 7.2.2.6   Biomedical          547
  • 7.3          MXENES               547
    • 7.3.1      Properties           547
    • 7.3.2      Applications       548
      • 7.3.2.1   Catalysts              548
      • 7.3.2.2   Hydrogels            549
      • 7.3.2.3   Energy storage devices  549
      • 7.3.2.4   Gas Separation  549
      • 7.3.2.5   Liquid Separation             549
      • 7.3.2.6   Antibacterials    550
  • 7.4          TRANSITION METAL DICHALCOGENIDES (TMDC) 550
    • 7.4.1      Properties           551
      • 7.4.1.1   Molybdenum disulphide (MoS2)               551
      • 7.4.1.2   Tungsten ditelluride (WTe2)        552
    • 7.4.2      Applications       552
      • 7.4.2.1   Electronics          552
      • 7.4.2.2   Biomedical          553
      • 7.4.2.3   Photovoltaics     553
      • 7.4.2.4   Piezoelectrics    553
      • 7.4.2.5   Sensors 554
      • 7.4.2.6   Filtration              554
      • 7.4.2.7   Batteries and supercapacitors    554
      • 7.4.2.8   Fiber lasers         554
  • 7.5          BOROPHENE      555
    • 7.5.1      Properties           555
    • 7.5.2      Applications       555
      • 7.5.2.1   Energy storage  555
      • 7.5.2.2   Hydrogen storage            556
      • 7.5.2.3   Sensors 556
      • 7.5.2.4   Electronics          556
  • 7.6          PHOSPHORENE 556
    • 7.6.1      Properties           557
      • 7.6.1.1   Fabrication methods      558
      • 7.6.1.2   Challenges for the use of phosphorene in devices              559
    • 7.6.2      Applications       559
      • 7.6.2.1   Electronics          559
      • 7.6.2.2   Field effect transistors   559
      • 7.6.2.3   Thermoelectrics               560
      • 7.6.2.4   Batteries              560
      • 7.6.2.5   Supercapacitors 561
      • 7.6.2.6   Photodetectors 561
      • 7.6.2.7   Sensors 561
  • 7.7          GRAPHITIC CARBON NITRIDE (g-C3N4)    562
    • 7.7.1      Properties           562
    • 7.7.2      Synthesis             562
    • 7.7.3      C2N        563
    • 7.7.4      Applications       563
      • 7.7.4.1   Electronics          563
      • 7.7.4.2   Filtration membranes    563
      • 7.7.4.3   Photocatalysts  564
      • 7.7.4.4   Batteries              564
      • 7.7.4.5   Sensors 564
  • 7.8          GERMANENE     564
  • 7.8.1      Properties           564
  • 7.8.2      Applications       565
  • 7.8.2.1   Electronics          565
  • 7.8.2.2   Batteries              565
  • 7.9          GRAPHDIYNE     565
  • 7.9.1      Properties           566
  • 7.9.2      Applications       566
  • 7.9.2.1   Electronics          566
  • 7.9.2.2   Batteries              567
  • 7.9.2.3   Separation membranes 567
  • 7.9.2.4   Water filtration 567
  • 7.9.2.5   Photocatalysts  567
  • 7.9.2.6   Photovoltaics     567
  • 7.10        GRAPHANE         568
  • 7.10.1    Properties           568
  • 7.10.2    Applications       568
  • 7.10.2.1                Electronics          568
  • 7.10.2.2                Hydrogen storage            569
  • 7.11        RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)     569
  • 7.11.1    Properties           569
  • 7.11.2    Applications       570
  • 7.11.2.1                Electronics          570
  • 7.12        SILICENE              570
  • 7.12.1    Properties           570
  • 7.12.2    Applications       571
  • 7.12.2.1                Electronics          571
  • 7.12.2.2                Photovoltaics     572
  • 7.12.2.3                Thermoelectrics               572
  • 7.12.2.4                Batteries              572
  • 7.12.2.5                Sensors 572
  • 7.13        STANENE/TINENE            572
  • 7.13.1    Properties           573
  • 7.13.2    Applications       573
  • 7.13.2.1                Electronics          573
  • 7.14        ANTIMONENE   574
  • 7.14.1    Properties           574
  • 7.14.2    Applications       574
  • 7.15        INDIUM SELENIDE            574
  • 7.15.1    Properties           574
  • 7.15.2    Applications       575
  • 7.15.2.1                Electronics          575
  • 7.16        LAYERED DOUBLE HYDROXIDES (LDH)     576
  • 7.16.1    Properties           576
  • 7.16.2    Applications       576
  • 7.16.2.1                Adsorbent          576
  • 7.16.2.2                Catalyst 576
  • 7.16.2.3                Sensors 576
  • 7.16.2.4                Electrodes           577
  • 7.16.2.5                Flame Retardants            577
  • 7.16.2.6                Biosensors          577
  • 7.16.2.7                Tissue engineering          578
  • 7.16.2.8                Anti-Microbials 578
  • 7.16.2.9                Drug Delivery     578
  • 7.17        2D MATERIALS PRODUCER AND SUPPLIER PROFILES         579 (7 company profiles)

 

8              FULLERENES       585

  • 8.1          Properties           585
  • 8.2          Products              586
  • 8.3          Markets and applications              587
  • 8.4          Technology Readiness Level (TRL)             588
  • 8.5          Global consumption in metric tonnes, 2010-2032               588
    • 8.5.1      Consumption by market 590
    • 8.5.1.1   Market share 2021 (%)  590
    • 8.5.1.2   Market Share 2021 (MT)               590
    • 8.5.1.3   Market share 2032 (%)  591
    • 8.5.1.4   Market Share 2032 (MT)               591
  • 8.6          Prices    592
  • 8.7          Producers           593 (20 company profiles)

 

9              NANODIAMONDS            605

  • 9.1          Types    605
    • 9.1.1      Fluorescent nanodiamonds (FNDs)          609
  • 9.2          Applications       609
  • 9.3          Price and price drivers   613
  • 9.4          Global demand 2018-2032, tonnes          614
  • 9.5          Company profiles             617 (30 company profiles)

 

10           GRAPHENE QUANTUM DOTS      646

  • 10.1        Comparison to quantum dots     647
  • 10.2        Properties           648
  • 10.3        Synthesis             648
    • 10.3.1    Top-down method          648
    • 10.3.2    Bottom-up method         649
  • 10.4        Applications       651
  • 10.5        Graphene quantum dots pricing 652
  • 10.6        Graphene quantum dot producers           653 (9 company profiles)

 

11           CARBON FOAM 662

  • 11.1        Types    662
  • 11.1.1    Carbon aerogels               662
    • 11.1.1.1                Carbon-based aerogel composites           663
  • 11.2        Properties           663
  • 11.3        Applications       665
  • 11.4        Company profiles             666 (9 company profiles)

 

12           DIAMOND-LIKE CARBON (DLC) COATINGS             675

  • 12.1        Properties           676
  • 12.2        Applications and markets             677
  • 12.3        Global market size           678
  • 12.4        Company profiles             680 (9 company profiles)

 

13           RESEARCH METHODOLOGY         687

 

14           REFERENCES       688

 

List of Tables

  • Table 1. The advanced carbon materials market. 31
  • Table 2. Market drivers and trends in carbon fibers.         32
  • Table 3. Summary of markets and applications for carbon fibers. 33
  • Table 4. Comparison of CFRP to competing materials.      34
  • Table 5. Production capacities of carbon fiber producers, in metric tonnes.            35
  • Table 6. Global demand for carbon fibers 2018-2032, by market (thousand metric tonnes).            37
  • Table 7. Main Toray production sites and capacities.         51
  • Table 8. Properties of isotropic graphite.               55
  • Table 9. Main markets and applications of isostatic graphite.        56
  • Table 10. Current or planned production capacities for iso-graphite, by type. Metric tonnes.          57
  • Table 11. Global demand for iso graphite, 2018-2032 (1,000 metric tonnes).         57
  • Table 12. Properties of graphene, properties of competing materials, applications thereof.            72
  • Table 13. Graphene market challenges. 73
  • Table 14. Main graphene producers by country, annual production capacities, types and main markets they sell into 2020.     74
  • Table 15. Types of graphene and typical prices.   78
  • Table 16. Pristine graphene flakes pricing by producer.   80
  • Table 17. Few-layer graphene pricing by producer.           81
  • Table 18. Graphene nanoplatelets pricing by producer.   81
  • Table 19. Graphene oxide and reduced graphene oxide pricing, by producer.        83
  • Table 20. Multi-layer graphene pricing by producer.         84
  • Table 21. Graphene ink pricing by producer.        85
  • Table 22. Demand for graphene (metric tonnes), 2018-2032.         86
  • Table 23. Main graphene producers in North America.    95
  • Table 24. Main graphene producers in Europe.   97
  • Table 25. Performance criteria of energy storage devices.              372
  • Table 26. Typical properties of SWCNT and MWCNT.        378
  • Table 27. Properties of CNTs and comparable materials. 379
  • Table 28. Applications of MWCNTs.          380
  • Table 29. Annual production capacity of the key MWCNT producers.        384
  • Table 30. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer.              385
  • Table 31. Properties of carbon nanotube paper. 488
  • Table 32. Comparative properties of MWCNT and SWCNT.            497
  • Table 33. Markets, benefits and applications of Single-Walled Carbon Nanotubes.              498
  • Table 34. Annual production capacity of SWCNT producers.          500
  • Table 35. SWCNT market demand forecast (metric tons), 2018-2032.         501
  • Table 36. Chasm SWCNT products.           503
  • Table 37. Thomas Swan SWCNT production.         519
  • Table 38. Comparative properties of BNNTs and CNTs.    528
  • Table 39. Applications of BNNTs.               528
  • Table 40. Comparison of synthesis methods for carbon nanofibers.           531
  • Table 41. 2D materials types.      542
  • Table 42. Comparison of  top-down exfoliation methods to produce 2D materials.              543
  • Table 43. Comparison of the bottom-up synthesis methods to produce 2D materials.        544
  • Table 44. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.               558
  • Table 45. Market overview for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications.      585
  • Table 46. Types of fullerenes and applications.    586
  • Table 47. Products incorporating fullerenes.        586
  • Table 48. Markets, benefits and applications of fullerenes.            587
  • Table 49. Global consumption of fullerenes in metric tonnes, 2010-2032.                588
  • Table 50. Fullerenes Market Share 2021 (MT).    590
  • Table 51. Fullerenes Market Share 2032 (MT).    591
  • Table 52. Example prices of fullerenes.   592
  • Table 53. Properties of nanodiamonds.  607
  • Table 54. Summary of types of NDS and production methods-advantages and disadvantages.       608
  • Table 55. Markets, benefits and applications of nanodiamonds.  609
  • Table 56. Pricing of nanodiamonds, by producer/distributor.        613
  • Table 57. Demand for nanodiamonds (metric tonnes), 2018-2032.              614
  • Table 58. Production methods, by main ND producers.   617
  • Table 59. Adamas Nanotechnologies, Inc. nanodiamond product list.        619
  • Table 60. Carbodeon Ltd. Oy nanodiamond product list.  623
  • Table 61. Daicel nanodiamond product list.           626
  • Table 62. FND Biotech Nanodiamond product list.              628
  • Table 63. JSC Sinta nanodiamond product list.     633
  • Table 64. Plasmachem product list and applications.         640
  • Table 65. Ray-Techniques Ltd. nanodiamonds product list.             642
  • Table 66. Comparison of ND produced by detonation and laser synthesis.              642
  • Table 67. Comparison of graphene QDs and semiconductor QDs. 647
  • Table 68. Advantages and disadvantages of methods for preparing GQDs.              650
  • Table 69. Applications of graphene quantum dots.            651
  • Table 70. Prices for graphene quantum dots.       652
  • Table 71. Properties of carbon foam materials.   664
  • Table 72. Applications of carbon foams. 665
  • Table 73. Properties of Diamond-like carbon (DLC) coatings.         676
  • Table 74. Applications and markets for Diamond-like carbon (DLC) coatings.          677
  • Table 75. Global revenues for DLC coatings, 2018-2032 (Billion USD).        678

 

List of Figures

  • Figure 1. Global market share of carbon fiber market, by capacity, 2021.  36
  • Figure 2. Global demand for carbon fibers 2018-2032, by market (thousand metric tonnes).          38
  • Figure 3. Isostatic pressed graphite.         55
  • Figure 4. Global demand for iso graphite, 2018-2032 (1,000 metric tonnes).          58
  • Figure 5. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.   71
  • Figure 6. Demand for graphene, 2018-2032, metric tonnes.          87
  • Figure 7. Global graphene demand by market, 2018-2032 (tons), conservative estimate. 89
  • Figure 8. Global graphene demand by market, 2018-2032 (tons). Medium estimate.         90
  • Figure 9. Global graphene demand by market, 2018-2032 (tons). High estimate. 90
  • Figure 10. Global graphene demand by market, 2018-2032 (tons).             92
  • Figure 11. Demand for graphene in China, by market, 2021.           92
  • Figure 12. Demand for graphene in Asia-Pacific, by market, 2021.               93
  • Figure 13. Main graphene producers in Asia-Pacific.          94
  • Figure 14. Demand for graphene in North America, by market, 2021.         96
  • Figure 15. Demand for graphene in Europe, by market, 2021.        98
  • Figure 16. Graphene heating films.           99
  • Figure 17. Graphene flake products.        105
  • Figure 18. AIKA Black-T. 110
  • Figure 19. Printed graphene biosensors. 120
  • Figure 20. Brain Scientific electrode schematic.   143
  • Figure 21. Graphene battery schematic. 171
  • Figure 22. Dotz Nano GQD products.       172
  • Figure 23. Graphene-based membrane dehumidification test cell.              179
  • Figure 24. Proprietary atmospheric CVD production.        191
  • Figure 25. Wearable sweat sensor.           229
  • Figure 26.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination. 236
  • Figure 27. Sensor surface.            253
  • Figure 28. BioStamp nPoint.        271
  • Figure 29. Nanotech Energy battery.       292
  • Figure 30. Hybrid battery powered electrical motorbike concept.               295
  • Figure 31. NAWAStitch integrated into carbon fiber composite.  296
  • Figure 32. Schematic illustration of three-chamber system for SWCNH production.            297
  • Figure 33. TEM images of carbon nanobrush.      298
  • Figure 34. Test performance after 6 weeks ACT II according to Scania STD4445.    313
  • Figure 35. Quantag GQDs and sensor.     315
  • Figure 36. The Sixth Element graphene products.              330
  • Figure 37. Thermal conductive graphene film.     331
  • Figure 38. Talcoat graphene mixed with paint.     343
  • Figure 39. T-FORCE CARDEA ZERO.            347
  • Figure 40. Market demand for carbon nanotubes by market, 2018-2032 (tons).   389
  • Figure 41. Demand for MWCNT by application in 2021.    389
  • Figure 42. Demand for MWCNT by region in 2021.             389
  • Figure 43. AWN Nanotech water harvesting prototype.  394
  • Figure 44. Carbonics, Inc.’s carbon nanotube technology.              410
  • Figure 45. Fuji carbon nanotube products.            421
  • Figure 46.  Internal structure of carbon nanotube adhesive sheet.             422
  • Figure 47. Carbon nanotube adhesive sheet.       423
  • Figure 48. Cup Stacked Type Carbon Nano Tubes schematic.         426
  • Figure 49. CSCNT composite dispersion. 426
  • Figure 50. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays. 432
  • Figure 51. Koatsu Gas Kogyo Co. Ltd CNT product.             437
  • Figure 52. Test specimens fabricated using MECHnano’s radiation curable resins modified with carbon nanotubes.                445
  • Figure 53. Hybrid battery powered electrical motorbike concept.               458
  • Figure 54. NAWAStitch integrated into carbon fiber composite.  459
  • Figure 55. Schematic illustration of three-chamber system for SWCNH production.            460
  • Figure 56. TEM images of carbon nanobrush.      461
  • Figure 57. CNT film.         464
  • Figure 58. SWCNT market demand forecast (metric tons), 2018-2032.       501
  • Figure 59. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.               504
  • Figure 60. Carbon nanotube paint product.           509
  • Figure 61. MEIJO eDIPS product.               510
  • Figure 62. HiPCO® Reactor.          513
  • Figure 63. Smell iX16 multi-channel gas detector chip.     517
  • Figure 64. The Smell Inspector.  518
  • Figure 65. Toray CNF printed RFID.           521
  • Figure 66. Double-walled carbon nanotube bundle cross-section micrograph and model. 523
  • Figure 67. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.         525
  • Figure 68. TEM image of FWNTs.               525
  • Figure 69. Schematic representation of carbon nanohorns.           526
  • Figure 70. TEM image of carbon onion.   527
  • Figure 71. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red. 528
  • Figure 72. Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and multi-walled carbon nanotubes (MWCNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWCNTs (Source: JNM).              529
  • Figure 73. Schematic of 2-D materials.    541
  • Figure 74. Structure of hexagonal boron nitride. 545
  • Figure 75. BN nanosheet textiles application.       547
  • Figure 76. Structure diagram of Ti3C2Tx.                548
  • Figure 77.  Types and applications of 2D TMDCs. 550
  • Figure 78. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2)          551
  • Figure 79. SEM image of MoS2.  552
  • Figure 80. Atomic force microscopy image of a representative MoS2 thin-film transistor. 553
  • Figure 81. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge.            554
  • Figure 82. Borophene schematic.              555
  • Figure 83. Black phosphorus structure.   557
  • Figure 84. Black Phosphorus crystal.        558
  • Figure 85. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation.                560
  • Figure 86: Graphitic carbon nitride.          562
  • Figure 87. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology.         563
  • Figure 88. Schematic of germanene.       564
  • Figure 89. Graphdiyne structure.              566
  • Figure 90. Schematic of Graphane crystal.             568
  • Figure 91. Schematic of a monolayer of rhenium disulfide.            569
  • Figure 92. Silicene structure.       570
  • Figure 93. Monolayer silicene on a silver (111) substrate.               571
  • Figure 94. Silicene transistor.      572
  • Figure 95. Crystal structure for stanene. 573
  • Figure 96. Atomic structure model for the 2D stanene on Bi2Te3(111).     573
  • Figure 97. Schematic of Indium Selenide (InSe). 575
  • Figure 98. Application of Li-Al LDH as CO2 sensor.             577
  • Figure 99. Technology Readiness Level (TRL) for fullerenes.           588
  • Figure 100. Global consumption of fullerenes in metric tonnes, 2010-2032.            589
  • Figure 101. Fullerenes Market Share 2021 (%).   590
  • Figure 102. Fullerenes Market Share 2032 (%).   591
  • Figure 103. Detonation Nanodiamond.   605
  • Figure 104. DND primary particles and properties.            606
  • Figure 105. Functional groups of Nanodiamonds.              607
  • Figure 106. Demand for nanodiamonds (metric tonnes), 2018-2032.          616
  • Figure 107. NBD battery.              635
  • Figure 108. Neomond dispersions.           638
  • Figure 109. Green-fluorescing graphene quantum dots. 646
  • Figure 110. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4).      647
  • Figure 111. Graphene quantum dots.      649
  • Figure 112. Top-down and bottom-up methods. 650
  • Figure 113. Dotz Nano GQD products.     653
  • Figure 114.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination.               657
  • Figure 115. Quantag GQDs and sensor.  659
  • Figure 116. Schematic of typical microstructure of carbon foam: (a) open-cell, (b) closed-cell.       662
  • Figure 117. Classification of DLC coatings.              676
  • Figure 118. Global revenues for DLC coatings, 2018-2032 (Billion USD).    679

 

 

 

The Global Market for Advanced Carbon Materials 2022-2032
The Global Market for Advanced Carbon Materials 2022-2032
PDF download.

The Global Market for Advanced Carbon Materials 2022-2032
The Global Market for Advanced Carbon Materials 2022-2032
PDF download and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

[mpdl-file-link file_id=9377]