The Global Market for Biobased Chemicals, Materials, Polymers, Plastics, Paints & Coatings and Fuels to 2033

0

October 2022 | 1170 pages, 205 tables, 335 figures | Download table of contents

Biobased materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Materials from biomass sources include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. The many processes to convert biomass components to value-added products and fuels can be classified broadly as biochemical or thermochemical. In addition, biotechnological processes that rely mainly on plant breeding, fermentation, and conventional enzyme isolation also are used. New bio-based materials that may compete with conventional materials are emerging continually, and the opportunities to use them in existing and novel products are explored in this publication. 

There is growing consumer demand and regulatory push for bio-based chemicals, materials, polymers, plastics, paints, coatings and fuels with high performance, good recyclability and biodegradable properties to underpin transition towards more sustainable manufacturing and products.

Contents include:

  • In depth market analysis of bio-based chemical feedstocks, biopolymers, bioplastics, natural fibers and lignin, biofuels and bio-based coatings and paints. 
  • Global production capacities, market volumes and trends, current and forecast to 2033. 
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide,  Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid – L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic bio-polymers and bio-plastics market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers,  Protein-based bioplastics, Algal and fungal. 
  • Analysis of market for biofuels. 
  • Analysis of types of natural fibers including plant fibers, animal fibers including alternative leather, wool, silk fiber and down and polysaccharides. 
  • Markets for natural fibers, including composites, aerospace, automotive, construction & building, sports & leisure, textiles, consumer products and packaging.
  • Production capacities of lignin producers. 
  • In depth analysis of biorefinery lignin production. 
  • Analysis of the market for bio-based, sustainable paints and coatings. 
  • Analysis of types of bio-coatings and paints market.  Including Alkyd coatings, Polyurethane coatings, Epoxy coatings, Acrylate resins, Polylactic acid (Bio-PLA), Polyhydroxyalkanoates (PHA), Cellulose, Rosins, Biobased carbon black, Lignin, Edible coatings, Protein-based biomaterials for coatings, Alginate etc. 
  • Profiles of over 800 companies. 

 

1              EXECUTIVE SUMMARY   53

  • 1.1          Market trends   54
  • 1.2          Global production to 2033            55
  • 1.3          Main producers and global production capacities               58
    • 1.3.1      Producers           58
    • 1.3.2      By biobased and sustainable plastic type               59
  • 1.4          Global demand for biobased and sustainable plastics 2020-21, by market               66
  • 1.5          Impact of COVID-19 pandemic on the bioplastics market and future demand        68
  • 1.6          Challenges for the biobased and sustainable plastics market         68

 

2              RESEARCH METHODOLOGY         70

 

3              THE GLOBAL PLASTICS MARKET 72

  • 3.1          Global production            72
  • 3.2          The importance of plastic              72
  • 3.3          Issues with plastics use  73
  • 3.4          Policy and regulations    73
  • 3.5          The circular economy     74
  • 3.6          Conventional polymer materials used in packaging            76
    • 3.6.1      Polyolefins: Polypropylene and polyethylene      77
    • 3.6.2      PET and other polyester polymers            79
    • 3.6.3      Renewable and bio-based polymers for packaging             79
  • 3.7          Comparison of synthetic fossil-based and bio-based polymers     81
  • 3.8          End-of-life treatment of bioplastics          81

 

4              BIO-BASED CHEMICALS 83

  • 4.1          Types    83
  • 4.2          Production capacities     84
  • 4.3          Bio-based adipic acid      85
  • 4.4          11-Aminoundecanoic acid (11-AA)            86
  • 4.5          1,4-Butanediol (1,4-BDO)              86
  • 4.6          Dodecanedioic acid (DDDA)         87
  • 4.7          Epichlorohydrin (ECH)    88
  • 4.8          Ethylene              89
  • 4.9          Furfural 90
  • 4.10        5-Hydroxymethylfurfural (HMF) 91
  • 4.11        5-Chloromethylfurfural (5-CMF) 91
  • 4.12        2,5-Furandicarboxylic acid (2,5-FDCA)     92
  • 4.13        Furandicarboxylic methyl ester (FDME)  93
  • 4.14        Isosorbide           93
  • 4.15        Itaconic acid       93
  • 4.16        3-Hydroxypropionic acid (3-HP) 94
  • 4.17        5 Hydroxymethyl furfural (HMF) 95
  • 4.18        Lactic acid (D-LA)             95
  • 4.19        Lactic acid – L-lactic acid (L-LA)   95
  • 4.20        Lactide  96
  • 4.21        Levoglucosenone             97
  • 4.22        Levulinic acid      98
  • 4.23        Monoethylene glycol (MEG)       98
  • 4.24        Monopropylene glycol (MPG)    99
  • 4.25        Muconic acid      100
  • 4.26        Naphtha              101
  • 4.27        Pentamethylene diisocyanate    101
  • 4.28        1,3-Propanediol (1,3-PDO)           102
  • 4.29        Sebacic acid        103
  • 4.30        Succinic acid (SA)             103

 

5              BIOPOLYMERS AND BIOPLASTICS              105

  • 5.1          Bio-based or renewable plastics 105
    • 5.1.1      Drop-in bio-based plastics            105
    • 5.1.2      Novel bio-based plastics                106
  • 5.2          Biodegradable and compostable plastics                107
    • 5.2.1      Biodegradability               107
    • 5.2.2      Compostability  108
  • 5.3          Advantages and disadvantages  109
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              109
  • 5.5          Market leaders by biobased and/or biodegradable plastic types  111
  • 5.6          Regional/country production capacities, by main types   112
    • 5.6.1      Bio-based Polyethylene (Bio-PE) production capacities, by country             114
    • 5.6.2      Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country              115
    • 5.6.3      Bio-based polyamides (Bio-PA) production capacities, by country               116
    • 5.6.4      Bio-based Polypropylene (Bio-PP) production capacities, by country          117
    • 5.6.5      Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country     118
    • 5.6.6      Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country         119
    • 5.6.7      Bio-based Polybutylene succinate (PBS) production capacities, by country              120
    • 5.6.8      Bio-based Polylactic acid (PLA) production capacities, by country 121
    • 5.6.9      Polyhydroxyalkanoates (PHA) production capacities, by country  122
    • 5.6.10    Starch blends production capacities, by country 123
  • 5.7          SYNTHETIC BIO-BASED POLYMERS            124
    • 5.7.1      Polylactic acid (Bio-PLA) 124
      • 5.7.1.1   Market analysis 124
      • 5.7.1.2   Producers           126
    • 5.7.2      Polyethylene terephthalate (Bio-PET)     128
      • 5.7.2.1   Market analysis 128
      • 5.7.2.2   Producers           129
    • 5.7.3      Polytrimethylene terephthalate (Bio-PTT)             130
      • 5.7.3.1   Market analysis 130
      • 5.7.3.2   Producers           130
    • 5.7.4      Polyethylene furanoate (Bio-PEF)             131
      • 5.7.4.1   Market analysis 131
      • 5.7.4.2   Comparative properties to PET   132
    • 5.7.4.3   Producers           133
    • 5.7.5      Polyamides (Bio-PA)       133
      • 5.7.5.1   Market analysis 134
      • 5.7.5.2   Producers           135
    • 5.7.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        135
      • 5.7.6.1   Market analysis 135
      • 5.7.6.2   Producers           136
    • 5.7.7      Polybutylene succinate (PBS) and copolymers     137
      • 5.7.7.1   Market analysis 137
      • 5.7.7.2   Producers           138
    • 5.7.8      Polyethylene (Bio-PE)    138
      • 5.7.8.1   Market analysis 138
      • 5.7.8.2   Producers           139
    • 5.7.9      Polypropylene (Bio-PP) 139
      • 5.7.9.1   Market analysis 139
      • 5.7.9.2   Producers           140
  • 5.8          NATURAL BIO-BASED POLYMERS               141
    • 5.8.1      Polyhydroxyalkanoates (PHA)     141
      • 5.8.1.1   Types    143
      • 5.8.1.2   Synthesis and production processes        147
      • 5.8.1.3   Market analysis 150
      • 5.8.1.4   Commercially available PHAs      151
      • 5.8.1.5   Markets for PHAs             152
      • 5.8.1.6   Producers           157
    • 5.8.2      Polysaccharides 158
      • 5.8.2.1   Microfibrillated cellulose (MFC) 158
      • 5.8.2.2   Cellulose nanocrystals    160
      • 5.8.2.3   Cellulose nanofibers       167
      • 5.8.2.4   Bacterial Nanocellulose (BNC)    172
    • 5.8.3      Protein-based bioplastics             176
      • 5.8.3.1   Types, applications and producers            176
    • 5.8.4      Algal and fungal 178
      • 5.8.4.1   Algal      178
      • 5.8.4.2   Mycelium            181
    • 5.8.5      Chitosan              184
    • 5.8.6      Microplastics alternatives             184
  • 5.9          PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS, BY REGION      185
    • 5.9.1      North America   186
    • 5.9.2      Europe 187
    • 5.9.3      Asia-Pacific         187
      • 5.9.3.1   China     187
      • 5.9.3.2   Japan    188
      • 5.9.3.3   Thailand               188
      • 5.9.3.4   Indonesia            188
    • 5.9.4      Latin America    189
  • 5.10        MARKET SEGMENTATION OF BIOPLASTICS           190
    • 5.10.1    Packaging            192
    • 5.10.2    Consumer products        194
    • 5.10.3    Automotive        195
    • 5.10.4    Building & construction 195
    • 5.10.5    Textiles 196
    • 5.10.6    Electronics          197
    • 5.10.7    Agriculture and horticulture        198
  • 5.11        BIO-BASED CHEMICALS, BIOPOLYMERS AND BIOPLASTICS COMPANY PROFILES    201 (325 company profiles)

 

6              NATURAL FIBERS              456

  • 6.1          Manufacturing method, matrix materials and applications of natural fibers            460
  • 6.2          Advantages of natural fibers       461
  • 6.3          Commercially available next-gen natural fiber  products 462
  • 6.4          Market drivers for next-gen natural fibers             465
  • 6.5          Challenges          466
  • 6.6          Plants (cellulose, lignocellulose) 467
    • 6.6.1      Seed fibers         467
      • 6.6.1.1   Cotton  467
      • 6.6.1.2   Kapok   468
      • 6.6.1.3   Luffa      470
    • 6.6.2      Bast fibers           471
      • 6.6.2.1   Jute       471
      • 6.6.2.2   Hemp    473
      • 6.6.2.3   Flax        474
      • 6.6.2.4   Ramie   476
      • 6.6.2.5   Kenaf    477
    • 6.6.3      Leaf fibers           479
      • 6.6.3.1   Sisal       479
      • 6.6.3.2   Abaca    480
    • 6.6.4      Fruit fibers          482
      • 6.6.4.1   Coir        482
      • 6.6.4.2   Banana 483
      • 6.6.4.3   Pineapple            485
    • 6.6.5      Stalk fibers from agricultural residues     486
      • 6.6.5.1   Rice fiber             486
      • 6.6.5.2   Corn      487
    • 6.6.6      Cane, grasses and reed  488
      • 6.6.6.1   Switch grass       488
      • 6.6.6.2   Sugarcane (agricultural residues)              488
      • 6.6.6.3   Bamboo               489
      • 6.6.6.4   Fresh grass (green biorefinery)  490
    • 6.6.7      Modified natural polymers          491
      • 6.6.7.1   Mycelium            491
      • 6.6.7.2   Chitosan              493
      • 6.6.7.3   Alginate               494
  • 6.7          Animal (fibrous protein) 496
  • 6.7.1      Wool     496
    • 6.7.1.1   Alternative wool materials           497
    • 6.7.1.2   Producers           497
  • 6.7.2      Silk fiber              497
    • 6.7.2.1   Alternative silk materials               498
  • 6.7.3      Leather 499
    • 6.7.3.1   Alternative leather materials       500
  • 6.7.4      Fur         502
    • 6.7.4.1   Producers           502
  • 6.7.5      Down    502
    • 6.7.5.1   Alternative down materials          502
  • 6.8          MARKETS FOR NATURAL FIBERS 503
    • 6.8.1      Composites        503
    • 6.8.2      Applications       503
    • 6.8.3      Natural fiber injection moulding compounds       505
      • 6.8.3.1   Properties           505
      • 6.8.3.2   Applications       505
    • 6.8.4      Non-woven natural fiber mat composites              506
      • 6.8.4.1   Automotive        506
      • 6.8.4.2   Applications       506
    • 6.8.5      Aligned natural fiber-reinforced composites        507
    • 6.8.6      Natural fiber biobased polymer compounds         507
    • 6.8.7      Natural fiber biobased polymer non-woven mats              508
      • 6.8.7.1   Flax        508
      • 6.8.7.2   Kenaf    508
    • 6.8.8      Natural fiber thermoset bioresin composites       509
    • 6.8.9      Aerospace          509
      • 6.8.9.1   Market overview             509
    • 6.8.10    Automotive        510
      • 6.8.10.1                Market overview             510
      • 6.8.10.2                Applications of natural fibers      514
    • 6.8.11    Building/construction     515
      • 6.8.11.1                Market overview             515
      • 6.8.11.2                Applications of natural fibers      515
    • 6.8.12    Sports and leisure            516
      • 6.8.12.1                Market overview             516
    • 6.8.13    Textiles 517
      • 6.8.13.1                Market overview             517
      • 6.8.13.2                Consumer apparel           518
      • 6.8.13.3                Geotextiles        518
    • 6.8.14    Packaging            519
      • 6.8.14.1                Market overview             520
  • 6.9          NATURAL FIBERS GLOBAL PRODUCTION 521
    • 6.9.1      Overall global fibers market        521
    • 6.9.2      Plant-based fiber production      524
    • 6.9.3      Animal-based natural fiber production   525
  • 6.10        NATURAL FIBER COMPANY PROFILES      526 (178 company profiles)

 

7              LIGNIN 707

  • 7.1          INTRODUCTION 707
    • 7.1.1      What is lignin?   707
      • 7.1.1.1   Lignin structure 708
    • 7.1.2      Types of lignin    709
      • 7.1.2.1   Sulfur containing lignin  712
      • 7.1.2.2   Sulfur-free lignin from biorefinery process            712
    • 7.1.3      Properties           712
    • 7.1.4      The lignocellulose biorefinery     715
    • 7.1.5      Markets and applications              716
    • 7.1.6      Challenges for using lignin            717
  • 7.2          LIGNIN PRODUCTON PROCESSES              717
    • 7.2.1      Lignosulphonates            719
    • 7.2.2      Kraft Lignin          720
      • 7.2.2.1   LignoBoost process         720
      • 7.2.2.2   LignoForce method         721
      • 7.2.2.3   Sequential Liquid Lignin Recovery and Purification             721
      • 7.2.2.4   A-Recovery+      722
    • 7.2.3      Soda lignin          723
    • 7.2.4      Biorefinery lignin              724
      • 7.2.4.1   Commercial and pre-commercial biorefinery lignin production facilities and  processes    725
    • 7.2.5      Organosolv lignins            727
    • 7.2.6      Hydrolytic lignin                728
  • 7.3          MARKETS FOR LIGNIN    728
    • 7.3.1      Market drivers and trends for lignin         729
    • 7.3.2      Production capacities     730
      • 7.3.2.1   Technical lignin availability (dry ton/y)    730
      • 7.3.2.2   Biomass conversion (Biorefinery)             730
    • 7.3.3      Estimated consumption of lignin                731
    • 7.3.4      Prices    732
    • 7.3.5      Heat and power energy 733
    • 7.3.6      Pyrolysis and syngas       733
    • 7.3.7      Aromatic compounds     733
      • 7.3.7.1   Benzene, toluene and xylene      733
      • 7.3.7.2   Phenol and phenolic resins          734
      • 7.3.7.3   Vanillin 735
    • 7.3.8      Plastics and polymers     735
    • 7.3.9      Hydrogels            736
    • 7.3.10    Carbon materials              737
      • 7.3.10.1                Carbon black      737
      • 7.3.10.2                Activated carbons            737
      • 7.3.10.3                Carbon fiber       738
    • 7.3.11    Concrete             739
    • 7.3.12    Rubber 740
    • 7.3.13    Biofuels 740
    • 7.3.14    Bitumen and Asphalt      740
    • 7.3.15    Oil and gas          741
    • 7.3.16    Energy storage  742
      • 7.3.16.1                Supercapacitors 742
      • 7.3.16.2                Anodes for lithium-ion batteries 742
      • 7.3.16.3                Gel electrolytes for lithium-ion batteries                743
      • 7.3.16.4                Binders for lithium-ion batteries 743
      • 7.3.16.5                Cathodes for lithium-ion batteries            743
      • 7.3.16.6                Sodium-ion batteries      744
    • 7.3.17    Binders, emulsifiers and dispersants        744
    • 7.3.18    Chelating agents              746
    • 7.3.19    Ceramics              747
    • 7.3.20    Automotive interiors      747
    • 7.3.21    Fire retardants  748
    • 7.3.22    Antioxidants      748
    • 7.3.23    Lubricants           748
    • 7.3.24    Dust control       749
  • 7.4          COMPANY PROFILES       750 (75 company profiles)

 

8              BIOBASED AND RENEWABLE FUELS          825

  • 8.1          BIOFUELS            825
    • 8.1.1      The biofuels market        825
    • 8.1.2      Types    826
      • 8.1.2.1   Solid Biofuels     826
      • 8.1.2.2   Liquid Biofuels  826
      • 8.1.2.3   Gaseous Biofuels             827
      • 8.1.2.4   Conventional Biofuels    827
      • 8.1.2.5   Advanced Biofuels           827
    • 8.1.3      Feedstocks         828
      • 8.1.3.1   First-Generation Feedstocks       829
      • 8.1.3.2   Second-Generation Feedstocks 830
      • 8.1.3.3   Third-Generation Feedstocks     836
      • 8.1.3.4   Fourth-Generation Feedstocks  838
      • 8.1.3.5   Market demand               840
    • 8.1.4      Bioethanol          841
    • 8.1.5      Bio-jet (bio-aviation) fuels            842
      • 8.1.5.1   Description         842
      • 8.1.5.2   Global market   843
      • 8.1.5.3   Production pathways     844
      • 8.1.5.4   Costs     846
      • 8.1.5.5   Biojet fuel production capacities                847
      • 8.1.5.6   Challenges          847
    • 8.1.6      Biomass-based diesel     848
      • 8.1.6.1   Biodiesel              848
      • 8.1.6.2   Renewable diesel            851
    • 8.1.7      Syngas  853
    • 8.1.8      Biogas and biomethane 854
      • 8.1.8.1   Feedstocks         856
    • 8.1.9      Biobutanol          857
      • 8.1.9.1   Production          858
  • 8.2          ELECTROFUELS (E-FUELS)             859
    • 8.2.1      Introduction       859
      • 8.2.1.1   Benefits of e-fuels           862
    • 8.2.2      Feedstocks         862
      • 8.2.2.1   Hydrogen electrolysis     863
      • 8.2.2.2   CO2 capture       863
    • 8.2.3      Production          864
    • 8.2.4      Electrolysers      866
      • 8.2.4.1   Commercial alkaline electrolyser cells (AECs)       867
      • 8.2.4.2   PEM electrolysers (PEMEC)         867
      • 8.2.4.3   High-temperature solid oxide electrolyser cells (SOECs)  868
    • 8.2.5      Direct Air Capture (DAC)               868
      • 8.2.5.1   Technologies     868
      • 8.2.5.2   Markets for DAC               870
      • 8.2.5.3   Costs     870
      • 8.2.5.4   Challenges          872
      • 8.2.5.5   Companies and production          872
      • 8.2.5.6   CO2 capture from point sources 874
    • 8.2.6      Costs     874
    • 8.2.7      Market challenges           877
    • 8.2.8      Companies         877
  • 8.3          GREEN AMMONIA           879
    • 8.3.1      Production          879
      • 8.3.1.1   Decarbonisation of ammonia production               881
      • 8.3.1.2   Green ammonia projects              882
    • 8.3.2      Green ammonia synthesis methods         882
      • 8.3.2.1   Haber-Bosch process      882
      • 8.3.2.2   Biological nitrogen fixation          883
      • 8.3.2.3   Electrochemical production         884
      • 8.3.2.4   Chemical looping processes        884
    • 8.3.3      Blue ammonia   884
      • 8.3.3.1   Blue ammonia projects  884
    • 8.3.4      Markets and applications              885
      • 8.3.4.1   Chemical energy storage              885
      • 8.3.4.2   Marine fuel         886
    • 8.3.5      Costs     888
    • 8.3.6      Estimated market demand           890
    • 8.3.7      Companies and projects 890
  • 8.4          COMPANY PROFILES       892 (114 company profiles)

 

9              BIO-BASED PAINTS AND COATINGS          984

  • 9.1          The global paints and coatings market    984
  • 9.2          Bio-based paints and coatings     984
  • 9.3          Challenges using bio-based paints and coatings   985
  • 9.4          Types of bio-based coatings and materials             986
    • 9.4.1      Alkyd coatings   986
      • 9.4.1.1   Alkyd resin properties    986
      • 9.4.1.2   Biobased alkyd coatings 987
      • 9.4.1.3   Products              988
    • 9.4.2      Polyurethane coatings   989
      • 9.4.2.1   Properties           989
      • 9.4.2.2   Biobased polyurethane coatings 990
      • 9.4.2.3   Products              991
    • 9.4.3      Epoxy coatings  992
      • 9.4.3.1   Properties           992
      • 9.4.3.2   Biobased epoxy coatings               993
      • 9.4.3.3   Products              994
    • 9.4.4      Acrylate resins   995
      • 9.4.4.1   Properties           996
      • 9.4.4.2   Biobased acrylates           996
      • 9.4.4.3   Products              996
    • 9.4.5      Polylactic acid (Bio-PLA) 997
      • 9.4.5.1   Properties           999
      • 9.4.5.2   Bio-PLA coatings and films            1000
    • 9.4.6      Polyhydroxyalkanoates (PHA)     1000
      • 9.4.6.1   Properties           1002
      • 9.4.6.2   PHA coatings      1004
      • 9.4.6.3   Commercially available PHAs      1005
    • 9.4.7      Cellulose              1007
      • 9.4.7.1   Microfibrillated cellulose (MFC) 1013
      • 9.4.7.2   Cellulose nanofibers       1015
      • 9.4.7.3   Cellulose nanocrystals    1019
      • 9.4.7.4   Bacterial Nanocellulose (BNC)    1021
    • 9.4.8      Rosins   1021
    • 9.4.9      Biobased carbon black   1022
      • 9.4.9.1   Lignin-based      1022
      • 9.4.9.2   Algae-based       1022
    • 9.4.10    Lignin    1022
      • 9.4.10.1                Application in coatings   1023
    • 9.4.11    Edible coatings  1023
    • 9.4.12    Protein-based biomaterials for coatings 1025
      • 9.4.12.1                Plant derived proteins   1025
      • 9.4.12.2                Animal origin proteins   1025
    • 9.4.13    Alginate               1027
  • 9.5          Market for bio-based paints and coatings              1029
    • 9.5.1      Global market revenues to 2033, total    1029
    • 9.5.2      Global market revenues to 2033, by market         1030
  • 9.6          Company profiles             1034 (130 company profiles)

 

10           REFERENCES       1155

 

List of Tables

  • Table 1. Market drivers and trends in biobased and sustainable plastics.  54
  • Table 2. Global production capacities of biobased and sustainable plastics 2018-2033, in 1,000 tons.          56
  • Table 3. Global production capacities, by producers.        58
  • Table 4. Global production capacities of biobased and sustainable plastics 2019-2033, by type, in 1,000 tons.        59
  • Table 5. Issues related to the use of plastics.        73
  • Table 6. Types of bio-based plastics and fossil-fuel-based plastics               76
  • Table 7. Comparison of synthetic fossil-based and bio-based polymers.   81
  • Table 8. List of Bio-based chemicals.        83
  • Table 9. Biobased MEG producers capacities.       98
  • Table 10. Type of biodegradation.            108
  • Table 11. Advantages and disadvantages of biobased plastics compared to conventional plastics. 109
  • Table 12. Types of Bio-based and/or Biodegradable Plastics, applications.               109
  • Table 13. Market leader by Bio-based and/or Biodegradable Plastic types.             111
  • Table 14. Bioplastics regional production capacities to 2030, 1,000 tons, 2019-2033.           112
  • Table 15. Polylactic acid (PLA) market analysis.    124
  • Table 16. Lactic acid producers and production capacities.             126
  • Table 17. PLA producers and production capacities.          126
  • Table 18. Planned PLA capacity expansions in China.         127
  • Table 19. Bio-based Polyethylene terephthalate (Bio-PET) market analysis.            128
  • Table 20. Bio-based Polyethylene terephthalate (PET) producers.              129
  • Table 21. Polytrimethylene terephthalate (PTT) market analysis. 130
  • Table 22. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   130
  • Table 23. Polyethylene furanoate (PEF) market analysis. 131
  • Table 24. PEF vs. PET.     132
  • Table 25. FDCA and PEF producers.          133
  • Table 26. Bio-based polyamides (Bio-PA) market analysis.              134
  • Table 27. Leading Bio-PA producers production capacities.            135
  • Table 28. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis.            135
  • Table 29. Leading PBAT producers, production capacities and brands.      136
  • Table 30. Bio-PBS market analysis.            137
  • Table 31. Leading PBS producers and production capacities.          138
  • Table 32. Bio-based Polyethylene (Bio-PE) market analysis.           138
  • Table 33. Leading Bio-PE producers.        139
  • Table 34. Bio-PP market analysis.              139
  • Table 35. Leading Bio-PP producers and capacities.           140
  • Table 36.Types of PHAs and properties. 144
  • Table 37. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 146
  • Table 38. Polyhydroxyalkanoate (PHA) extraction methods.          148
  • Table 39. Polyhydroxyalkanoates (PHA) market analysis. 150
  • Table 40. Commercially available PHAs.  151
  • Table 41. Markets and applications for PHAs.       153
  • Table 42. Applications, advantages and disadvantages of PHAs in packaging.         154
  • Table 43. Polyhydroxyalkanoates (PHA) producers.           157
  • Table 44. Microfibrillated cellulose (MFC) market analysis.            158
  • Table 45. Leading MFC producers and capacities.               159
  • Table 46. Synthesis methods for cellulose nanocrystals (CNC).     161
  • Table 47. CNC sources, size and yield.      162
  • Table 48. CNC properties.             162
  • Table 49. Mechanical properties of CNC and other reinforcement materials.         163
  • Table 50. Applications of nanocrystalline cellulose (NCC).               165
  • Table 51. Cellulose nanocrystals analysis.               165
  • Table 52: Cellulose nanocrystal production capacities and production process, by producer.          167
  • Table 53. Applications of cellulose nanofibers (CNF).        168
  • Table 54. Cellulose nanofibers market analysis.   169
  • Table 55. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    171
  • Table 56. Applications of bacterial nanocellulose (BNC). 175
  • Table 57. Types of protein based-bioplastics, applications and companies.             176
  • Table 58. Types of algal and fungal based-bioplastics, applications and companies.             178
  • Table 59. Overview of alginate-description, properties, application and market size.          178
  • Table 60. Companies developing algal-based bioplastics. 180
  • Table 61. Overview of mycelium fibers-description, properties, drawbacks and applications.          181
  • Table 62. Companies developing mycelium-based bioplastics.      183
  • Table 63. Overview of chitosan-description, properties, drawbacks and applications.         184
  • Table 64. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons.              185
  • Table 65. Biobased and sustainable plastics producers in North America. 186
  • Table 66. Biobased and sustainable plastics producers in Europe.               187
  • Table 67. Biobased and sustainable plastics producers in Asia-Pacific.       188
  • Table 68. Biobased and sustainable plastics producers in Latin America.  189
  • Table 69. Granbio Nanocellulose Processes.         305
  • Table 70. Lactips plastic pellets. 335
  • Table 71. Oji Holdings CNF products.       384
  • Table 72. Types of next-gen natural fibers.            456
  • Table 73. Application, manufacturing method, and matrix materials of natural fibers.        460
  • Table 74. Typical properties of natural fibers.      461
  • Table 75. Commercially available next-gen natural fiber products.              462
  • Table 76. Market drivers for natural fibers.           465
  • Table 77. Overview of cotton fibers-description, properties, drawbacks and applications. 467
  • Table 78. Overview of kapok fibers-description, properties, drawbacks and applications. 468
  • Table 79. Overview of luffa fibers-description, properties, drawbacks and applications.    470
  • Table 80. Overview of jute fibers-description, properties, drawbacks and applications.     471
  • Table 81. Overview of hemp fibers-description, properties, drawbacks and applications.  473
  • Table 82. Overview of flax fibers-description, properties, drawbacks and applications.      474
  • Table 83. Overview of ramie fibers- description, properties, drawbacks and applications. 476
  • Table 84. Overview of kenaf fibers-description, properties, drawbacks and applications.  477
  • Table 85. Overview of sisal leaf fibers-description, properties, drawbacks and applications.            479
  • Table 86. Overview of abaca fibers-description, properties, drawbacks and applications.  480
  • Table 87. Overview of coir fibers-description, properties, drawbacks and applications.      482
  • Table 88. Overview of banana fibers-description, properties, drawbacks and applications.               483
  • Table 89. Overview of pineapple fibers-description, properties, drawbacks and applications.         485
  • Table 90. Overview of rice fibers-description, properties, drawbacks and applications.      486
  • Table 91. Overview of corn fibers-description, properties, drawbacks and applications.    487
  • Table 92. Overview of switch grass fibers-description, properties and applications.             488
  • Table 93. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.           488
  • Table 94. Overview of bamboo fibers-description, properties, drawbacks and applications.             489
  • Table 95. Overview of mycelium fibers-description, properties, drawbacks and applications.          493
  • Table 96. Overview of chitosan fibers-description, properties, drawbacks and applications.            494
  • Table 97. Overview of alginate-description, properties, application and market size.          495
  • Table 98. Overview of wool fibers-description, properties, drawbacks and applications.   496
  • Table 99. Alternative wool materials producers. 497
  • Table 100. Overview of silk fibers-description, properties, application and market size.     498
  • Table 101. Alternative silk materials producers.  499
  • Table 102. Alternative leather materials producers.          500
  • Table 103. Next-gen fur producers.          502
  • Table 104. Alternative down materials producers.             502
  • Table 105. Applications of natural fiber composites.         503
  • Table 106. Typical properties of short natural fiber-thermoplastic composites.     505
  • Table 107. Properties of non-woven natural fiber mat composites.            506
  • Table 108. Properties of aligned natural fiber composites.             507
  • Table 109. Properties of natural fiber-bio-based polymer compounds.     508
  • Table 110. Properties of natural fiber-bio-based polymer non-woven mats.           508
  • Table 111. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 509
  • Table 112. Natural fiber-reinforced polymer composite in the automotive market.             511
  • Table 113. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 512
  • Table 114. Applications of natural fibers in the automotive industry.         514
  • Table 115. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use.                515
  • Table 116. Applications of natural fibers in the building/construction sector.         515
  • Table 117. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use.  516
  • Table 118. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use.     517
  • Table 119. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 520
  • Table 120. Granbio Nanocellulose Processes.      598
  • Table 121. Oji Holdings CNF products.     652
  • Table 122. Technical lignin types and applications.             710
  • Table 123. Classification of technical lignins.         712
  • Table 124. Lignin content of selected biomass.   713
  • Table 125. Properties of lignins and their applications.     714
  • Table 126. Example markets and applications for lignin.  716
  • Table 127. Processes for lignin production.           718
  • Table 128. Biorefinery feedstocks.           724
  • Table 129. Comparison of pulping and biorefinery lignins.              724
  • Table 130. Commercial and pre-commercial biorefinery lignin production facilities and  processes              725
  • Table 131. Market drivers and trends for lignin.  729
  • Table 132. Production capacities of technical lignin producers.    730
  • Table 133. Production capacities of biorefinery lignin producers. 730
  • Table 134. Estimated consumption of lignin, 2019-2033 (000 MT).             731
  • Table 135. Prices of benzene, toluene, xylene and their derivatives.          733
  • Table 136. Application of lignin in plastics and polymers. 735
  • Table 137. Lignin-derived anodes in lithium batteries.     742
  • Table 138. Application of lignin in binders, emulsifiers and dispersants.   744
  • Table 139. Categories and examples of solid biofuel.        826
  • Table 140. Comparison of biofuels and e-fuels to fossil and electricity.      827
  • Table 141. Biorefinery feedstocks.           828
  • Table 142. Feedstock conversion pathways.         829
  • Table 143. First-Generation Feedstocks. 829
  • Table 144.  Lignocellulosic ethanol plants and capacities.                830
  • Table 145. Comparison of pulping and biorefinery lignins.              832
  • Table 146. Commercial and pre-commercial biorefinery lignin production facilities and  processes              833
  • Table 147. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 834
  • Table 148. Properties of microalgae and macroalgae.       836
  • Table 149. Yield of algae and other biodiesel crops.           837
  • Table 150. Advantages and disadvantages of biofuels, by generation.       838
  • Table 151. Advantages and disadvantages of biojet fuel  843
  • Table 152. Production pathways for bio-jet fuel. 844
  • Table 153. Current and announced biojet fuel facilities and capacities.     847
  • Table 154, Biodiesel production techniques.        848
  • Table 155. Biodiesel by generation.         849
  • Table 156. Biogas feedstocks.     856
  • Table 157. Applications of e-fuels, by type.           860
  • Table 158. Overview of e-fuels. 861
  • Table 159. Benefits of e-fuels.    862
  • Table 160. Main characteristics of different electrolyzer technologies.     866
  • Table 161. Advantages and disadvantages of DAC.             868
  • Table 162. DAC companies and technologies.      870
  • Table 163. Markets for DAC.        870
  • Table 164. Cost estimates of DAC.             871
  • Table 165. Challenges for DAC technology.           872
  • Table 166. DAC technology developers and production.  872
  • Table 167. Market challenges for e-fuels.              877
  • Table 168. E-fuels companies.    877
  • Table 169. Green ammonia projects (current and planned).          882
  • Table 170. Blue ammonia projects.          884
  • Table 171. Ammonia fuel cell technologies.          885
  • Table 172. Market overview of green ammonia in marine fuel.    886
  • Table 173. Summary of marine alternative fuels. 887
  • Table 174. Estimated costs for different types of ammonia.           889
  • Table 175. Main players in green ammonia.          890
  • Table 176. Granbio Nanocellulose Processes.      931
  • Table 177. Types of alkyd resins and properties. 986
  • Table 178. Market summary for biobased alkyd coatings-raw materials, advantages, disadvantages, applications and producers.          988
  • Table 179. Biobased alkyd coating products.        988
  • Table 180. Types of polyols.         990
  • Table 181. Polyol producers.       991
  • Table 182. Biobased polyurethane coating products.        991
  • Table 183. Market summary for biobased epoxy resins.  993
  • Table 184. Biobased polyurethane coating products.        995
  • Table 185. Biobased acrylate resin products.        996
  • Table 186. Polylactic acid (PLA) market analysis. 997
  • Table 187. PLA producers and production capacities.        999
  • Table 188. Polyhydroxyalkanoates (PHA) market analysis.              1001
  • Table 189.Types of PHAs and properties.               1004
  • Table 190. Polyhydroxyalkanoates (PHA) producers.        1005
  • Table 191. Commercially available PHAs.               1006
  • Table 192. Properties of micro/nanocellulose, by type.    1009
  • Table 193. Types of nanocellulose.           1012
  • Table 194: MFC production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1014
  • Table 195. Market overview for cellulose nanofibers in paints and coatings.           1015
  • Table 196. Companies developing cellulose nanofibers products in paints and coatings.   1017
  • Table 197. CNC properties.          1019
  • Table 198: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.                1020
  • Table 199. Edible coatings market summary.       1024
  • Table 200. Types of protein based-biomaterials, applications and companies.       1026
  • Table 201. Overview of alginate-description, properties, application and market size.        1027
  • Table 202. Global market revenues for biobased paints and coatings, 2018-2031 (billions USD).    1029
  • Table 203. Market revenues for biobased paints and coatings, 2018-2031 (billions USD), conservative estimate.   1030
  • Table 204. Market revenues for biobased paints and coatings, 2018-2031 (billions USD), high estimate.    1032
  • Table 205. Oji Holdings CNF products.     1119

 

List of Figures

  • Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons.        54
  • Figure 2. Global production capacities of bioplastics 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types.   57
  • Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2033, by type, in 1,000 tons.  61
  • Figure 4. Global production capacities of bioplastics in 2019-2033, by type.           62
  • Figure 5. Global production capacities of biobased and sustainable plastics 2019-2033, by region, tonnes.               63
  • Figure 6. Global demand for biobased and sustainable plastics by end user market, 2021  64
  • Figure 7. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, tons. 66
  • Figure 8. Current and future applications of biobased and sustainable plastics.     66
  • Figure 9. Global demand for biobased and sustainable plastics by end user market, 2021.                67
  • Figure 10. Challenges for the biobased and sustainable plastics market.   68
  • Figure 11. Global plastics production 1950-2018, millions of tons.              72
  • Figure 12. The circular plastic economy. 75
  • Figure 13. Routes for synthesizing polymers from fossil-based and bio-based resources.  80
  • Figure 14. Bio-based chemicals production capacities, 2018-2033.               85
  • Figure 15. Overview of Toray process. Overview of process           85
  • Figure 16. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes).         87
  • Figure 17. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes).             88
  • Figure 18. Epichlorohydrin production capacities, 2018-2033 (tonnes).    89
  • Figure 19. Ethylene production capacities, 2018-2033 (tonnes).  90
  • Figure 20. Potential industrial uses of 3-hydroxypropanoic acid.  94
  • Figure 21. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes). 96
  • Figure 22. Lactide production capacities, 2018-2033 (tonnes).     97
  • Figure 23. Bio-MEG producers capacities.              99
  • Figure 24. Bio-MPG production capacities, 2018-2033.      100
  • Figure 25. Naphtha production capacities, 2018-2033 (tonnes).  101
  • Figure 26. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes). 102
  • Figure 27. Sebacic acid production capacities, 2018-2033 (tonnes).           103
  • Figure 28.  Coca-Cola PlantBottle®.           106
  • Figure 29. Interrelationship between conventional, bio-based and biodegradable plastics.              107
  • Figure 30. Bioplastics regional production capacities to 2030, 1,000 tons, 2019-2033.         114
  • Figure 31. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033.            114
  • Figure 32. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033   116
  • Figure 33. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033.   117
  • Figure 34. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033.             118
  • Figure 35. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033.         119
  • Figure 36. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033.                120
  • Figure 37. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033.  120
  • Figure 38. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033.    122
  • Figure 39. PHA production capacities, 1,000 tons, 2019-2033.        123
  • Figure 40. Starch blends production capacities, 1,000 tons, 2019-2033.     124
  • Figure 41. Production capacities of Polyethylene furanoate (PEF) to 2025.               133
  • Figure 42. PHA family.    144
  • Figure 43. TEM image of cellulose nanocrystals. 160
  • Figure 44. CNC preparation.        161
  • Figure 45. Extracting CNC from trees.      162
  • Figure 46. CNC slurry.     164
  • Figure 47. CNF gel.           168
  • Figure 48. Bacterial nanocellulose shapes              173
  • Figure 49. BLOOM masterbatch from Algix.           179
  • Figure 50. Typical structure of mycelium-based foam.     182
  • Figure 51. Commercial mycelium composite construction materials.          183
  • Figure 52. Global production capacities of biobased and sustainable plastics 2020.              186
  • Figure 53. Global production capacities of biobased and sustainable plastics 2033.              186
  • Figure 54. Global production capacities for biobased and sustainable plastics by end user market 2019, 1,000 tons.                190
  • Figure 55. Global production capacities for biobased and sustainable plastics by end user market 2020, 1,000 tons.                191
  • Figure 56. Global production capacities for biobased and sustainable plastics by end user market 2030      192
  • Figure 57. PHA bioplastics products.        193
  • Figure 58. Global production capacities for biobased and sustainable plastics in packaging 2019-2033, in 1,000 tons.                194
  • Figure 59. Global production capacities for biobased and sustainable plastics in consumer products 2019-2033, in 1,000 tons.         194
  • Figure 60. Global production capacities for biobased and sustainable plastics in automotive 2019-2033, in 1,000 tons.                195
  • Figure 61. Global production capacities for biobased and sustainable plastics in building and construction 2019-2033, in 1,000 tons.     196
  • Figure 62. Global production capacities for biobased and sustainable plastics in textiles 2019-2033, in 1,000 tons.                197
  • Figure 63. Global production capacities for biobased and sustainable plastics in electronics 2019-2033, in 1,000 tons.                198
  • Figure 64. Biodegradable mulch films.     199
  • Figure 65. Global production capacities for biobased and sustainable plastics in agriculture 2019-2033, in 1,000 tons.                200
  • Figure 66. Algiknit yarn. 206
  • Figure 67. Bio-PA rear bumper stay.         223
  • Figure 68. BIOLO e-commerce mailer bag made from PHA.            231
  • Figure 69. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 232
  • Figure 70. formicobio™ technology.         258
  • Figure 71. nanoforest-S. 260
  • Figure 72. nanoforest-PDP.         260
  • Figure 73. nanoforest-MB.           261
  • Figure 74. CuanSave film.             268
  • Figure 75. ELLEX products.           271
  • Figure 76. CNF-reinforced PP compounds.            271
  • Figure 77. Kirekira! toilet wipes. 272
  • Figure 78. Mushroom leather.    284
  • Figure 79. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  298
  • Figure 80. PHA production process.         299
  • Figure 81. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                307
  • Figure 82. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 310
  • Figure 83. CNF gel.           316
  • Figure 84. Block nanocellulose material. 316
  • Figure 85. CNF products developed by Hokuetsu.              317
  • Figure 86. Made of Air's HexChar panels.               344
  • Figure 87. TransLeather.               345
  • Figure 88. IPA synthesis method.              354
  • Figure 89. MOGU-Wave panels. 356
  • Figure 90. Reishi.              361
  • Figure 91. Nippon Paper Industries’ adult diapers.             374
  • Figure 92. Compostable water pod.         376
  • Figure 93. CNF clear sheets.        384
  • Figure 94. Oji Holdings CNF polycarbonate product.          386
  • Figure 95. Manufacturing process for STARCEL.   408
  • Figure 96. Lyocell process.           419
  • Figure 97. Spider silk production.              423
  • Figure 98. Sulapac cosmetics containers.               426
  • Figure 99.  Sulzer equipment for PLA polymerization processing. 427
  • Figure 100. Teijin bioplastic film for door handles.             434
  • Figure 101. Corbion FDCA production process.    441
  • Figure 102. Visolis’ Hybrid Bio-Thermocatalytic Process. 448
  • Figure 103. Types of natural fibers.          459
  • Figure 104. Absolut natural based fiber bottle cap.            462
  • Figure 105. Adidas algae-ink tees.             462
  • Figure 106. Carlsberg natural fiber beer bottle.   462
  • Figure 107. Miratex watch bands.             463
  • Figure 108. Adidas Made with Nature Ultraboost 22.        463
  • Figure 109. PUMA RE:SUEDE sneaker      463
  • Figure 110. Cotton production volume 2018-2033 (Million MT).  468
  • Figure 111. Kapok production volume 2018-2033 (MT).  469
  • Figure 112.  Luffa cylindrica fiber.             470
  • Figure 113. Jute production volume 2018-2033 (Million MT).        472
  • Figure 114. Hemp fiber production volume 2018-2033 ( MT).       474
  • Figure 115. Flax fiber production volume 2018-2033 (MT).            476
  • Figure 116. Ramie fiber production volume 2018-2033 (MT).        477
  • Figure 117. Kenaf fiber production volume 2018-2033 (MT).         478
  • Figure 118. Sisal fiber production volume 2018-2033 (MT).           480
  • Figure 119. Abaca fiber production volume 2018-2033 (MT).        482
  • Figure 120. Coir fiber production volume 2018-2033 (MILLION MT).          483
  • Figure 121. Banana fiber production volume 2018-2033 (MT).     484
  • Figure 122. Pineapple fiber.         485
  • Figure 123. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019.      486
  • Figure 124. Bamboo fiber production volume 2018-2033 (MILLION MT). 490
  • Figure 125. Typical structure of mycelium-based foam.   491
  • Figure 126. Commercial mycelium composite construction materials.       492
  • Figure 127. Frayme Mylo™️.         492
  • Figure 128. BLOOM masterbatch from Algix.        496
  • Figure 129. Conceptual landscape of next-gen leather materials. 500
  • Figure 130. Hemp fibers combined with PP in car door panel.       509
  • Figure 131. Car door produced from Hemp fiber.               510
  • Figure 132. Mercedes-Benz components containing natural fibers.            511
  • Figure 133. AlgiKicks sneaker, made with the Algiknit biopolymer gel.       518
  • Figure 134. Coir mats for erosion control.              519
  • Figure 135. Global fiber production in 2021, by fiber type, million MT and %.        522
  • Figure 136. Global fiber production (million MT) to 2020-2033.     523
  • Figure 137. Plant-based fiber production 2018-2033, by fiber type, MT.   524
  • Figure 138. Animal based fiber production 2018-2033, by fiber type, million MT. 525
  • Figure 139. Pluumo.        529
  • Figure 140. Algiknit yarn.              533
  • Figure 141. Amadou leather shoes.          534
  • Figure 142. Anpoly cellulose nanofiber hydrogel.               536
  • Figure 143. MEDICELLU™.            537
  • Figure 144. Asahi Kasei CNF fabric sheet.               539
  • Figure 145. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.            539
  • Figure 146. CNF nonwoven fabric.            540
  • Figure 147. Roof frame made of natural fiber.     543
  • Figure 148.Tras Rei chair incorporating ampliTex fibers.  545
  • Figure 149. Natural fibres racing seat.     546
  • Figure 150. Porche Cayman GT4 Clubsport incorporating BComp flax fibers.          546
  • Figure 151. Beyond Leather Materials product.   548
  • Figure 152. Fiber-based screw cap.           556
  • Figure 153. Cellugy materials.     562
  • Figure 154. nanoforest-S.             565
  • Figure 155. nanoforest-PDP.       566
  • Figure 156. nanoforest-MB.        566
  • Figure 157. CuanSave film.           571
  • Figure 158. Celish.           572
  • Figure 159. Trunk lid incorporating CNF. 573
  • Figure 160. ELLEX products.         574
  • Figure 161. CNF-reinforced PP compounds.          575
  • Figure 162. Kirekira! toilet wipes.              575
  • Figure 163. Color CNF.   576
  • Figure 164. Rheocrysta spray.     580
  • Figure 165. DKS CNF products.   580
  • Figure 166. Mushroom leather. 584
  • Figure 167. CNF based on citrus peel.      585
  • Figure 168. Citrus cellulose nanofiber.    585
  • Figure 169. Filler Bank CNC products.      589
  • Figure 170. Fibers on kapok tree and after processing.     591
  • Figure 171. Water-repellent cellulose.    592
  • Figure 172. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 594
  • Figure 173. CNF products from Furukawa Electric.              595
  • Figure 174. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.            600
  • Figure 175. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).              602
  • Figure 176. CNF gel.        604
  • Figure 177. Block nanocellulose material.              604
  • Figure 178. CNF products developed by Hokuetsu.            605
  • Figure 179. Marine leather products.      606
  • Figure 180. Inner Mettle Milk products. 608
  • Figure 181. Dual Graft System.   610
  • Figure 182. Engine cover utilizing Kao CNF composite resins.        611
  • Figure 183. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).           612
  • Figure 184. Kami Shoji CNF products.      613
  • Figure 185. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).     615
  • Figure 186. Nike Algae Ink graphic tee.   620
  • Figure 187. BioFlex process.        621
  • Figure 188. TransLeather.             623
  • Figure 189. Chitin nanofiber product.      626
  • Figure 190. Marusumi Paper cellulose nanofiber products.            627
  • Figure 191. FibriMa cellulose nanofiber powder. 628
  • Figure 192. Cellulomix production process.           629
  • Figure 193. Nanobase versus conventional products.       630
  • Figure 194. MOGU-Wave panels.              633
  • Figure 195. CNF slurries.                634
  • Figure 196. Range of CNF products.          635
  • Figure 197. Reishi.           638
  • Figure 198. Natural Fiber Welding, Inc. materials.              641
  • Figure 199. Nippon Paper Industries’ adult diapers.          646
  • Figure 200. Leather made from leaves.   647
  • Figure 201. Nike shoe with beLEAF™.      647
  • Figure 202. CNF clear sheets.      652
  • Figure 203. Oji Holdings CNF polycarbonate product.       653
  • Figure 204. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 661
  • Figure 205. XCNF.            663
  • Figure 206. LOVR hemp leather. 665
  • Figure 207. CNF insulation flat plates.     667
  • Figure 208. Manufacturing process for STARCEL. 671
  • Figure 209. 3D printed cellulose shoe.    673
  • Figure 210. Lyocell process.         675
  • Figure 211. North Face Spiber Moon Parka.          677
  • Figure 212. PANGAIA LAB NXT GEN Hoodie.         678
  • Figure 213. Spider silk production.            679
  • Figure 214. 2 wt.% CNF suspension.       683
  • Figure 215. BiNFi-s Dry Powder. 683
  • Figure 216. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          684
  • Figure 217. Silk nanofiber (right) and cocoon of raw material.       684
  • Figure 218. Sulapac cosmetics containers.             686
  • Figure 219. Comparison of weight reduction effect using CNF.     691
  • Figure 220. CNF resin products. 693
  • Figure 221. Vegea production process.   696
  • Figure 222. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     700
  • Figure 223. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        701
  • Figure 224. Worn Again products.             703
  • Figure 225. Zelfo Technology GmbH CNF production process.       705
  • Figure 226. High purity lignin.     708
  • Figure 227. Lignocellulose architecture. 709
  • Figure 228. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.                710
  • Figure 229. The lignocellulose biorefinery.            715
  • Figure 230. LignoBoost process. 721
  • Figure 231. LignoForce system for lignin recovery from black liquor.          721
  • Figure 232. Sequential liquid-lignin recovery and purification (SLPR) system.         722
  • Figure 233. A-Recovery+ chemical recovery concept.       723
  • Figure 234.  Schematic of a biorefinery for production of carriers and chemicals. 725
  • Figure 235. Organosolv lignin.     727
  • Figure 236. Hydrolytic lignin powder.      728
  • Figure 237. Estimated consumption of lignin, 2019-2033 (000 MT).            732
  • Figure 238. Schematic of WISA plywood home.   735
  • Figure 239. Lignin based activated carbon.            737
  • Figure 240. Lignin/celluose precursor.     739
  • Figure 241. ANDRITZ Lignin Recovery process.    753
  • Figure 242. DAWN Technology Process. 756
  • Figure 243. BALI™ technology.   760
  • Figure 244. Pressurized Hot Water Extraction.     763
  • Figure 245. sunliquid® production process.           767
  • Figure 246. Domsjö process.       768
  • Figure 247.  TMP-Bio Process.    772
  • Figure 248. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.          773
  • Figure 249. AVAPTM process.     778
  • Figure 250. GreenPower+™ process.       778
  • Figure 251. BioFlex process.        787
  • Figure 252. LX Process.  789
  • Figure 253. METNIN™ Lignin refining technology.              792
  • Figure 254. Enfinity cellulosic ethanol technology process.            798
  • Figure 255: Plantrose process.    803
  • Figure 256. Hansa lignin.               807
  • Figure 257. Stora Enso lignin battery materials.   812
  • Figure 258. UPM biorefinery process.     817
  • Figure 259. The Proesa® Process.              819
  • Figure 260. Goldilocks process and applications. 821
  • Figure 261.  Schematic of a biorefinery for production of carriers and chemicals. 833
  • Figure 262. Hydrolytic lignin powder.      836
  • Figure 263. Liquid biofuel production and consumption (in thousands of m3), 2000-2021.                840
  • Figure 264. Distribution of global liquid biofuel production in 2021.            841
  • Figure 265. Ethanol consumption 2010-2027 (million litres).         842
  • Figure 266. Global bio-jet fuel consumption 2010-2027 (M litres/year).   844
  • Figure 267. Global biodiesel consumption, 2010-2027 (M litres/year).      851
  • Figure 268. Global renewable diesel consumption, 2010-2027 (M litres/year).      853
  • Figure 269. Total syngas market by product in MM Nm³/h of Syngas, 2021.             854
  • Figure 270. Biogas and biomethane pathways.   856
  • Figure 271. Properties of petrol and biobutanol. 857
  • Figure 272. Biobutanol production route.              858
  • Figure 273. Process steps in the production of electrofuels.          859
  • Figure 274. Mapping storage technologies according to performance characteristics.        860
  • Figure 275. Production process for green hydrogen.         863
  • Figure 276. E-liquids production routes. 864
  • Figure 277. Fischer-Tropsch liquid e-fuel products.            865
  • Figure 278. Resources required for liquid e-fuel production.         865
  • Figure 279. Schematic of Climeworks DAC system.            869
  • Figure 280. Levelized cost and fuel-switching CO2 prices of e-fuels.           875
  • Figure 281. Cost breakdown for e-fuels. 876
  • Figure 282. Classification and process technology according to carbon emission in ammonia production.  879
  • Figure 283. Green ammonia production and use.               881
  • Figure 284. Schematic of the Haber Bosch ammonia synthesis reaction.  883
  • Figure 285. Schematic of hydrogen production via steam methane reformation. 883
  • Figure 286. Estimated production cost of green ammonia.             889
  • Figure 287. Projected annual ammonia production, million tons. 890
  • Figure 288. ANDRITZ Lignin Recovery process.    895
  • Figure 289. FBPO process             906
  • Figure 290. Direct Air Capture Process.   909
  • Figure 291. CRI process. 910
  • Figure 292. Domsjö process.       918
  • Figure 293. FuelPositive system. 926
  • Figure 294. Infinitree swing method.       937
  • Figure 295. Enfinity cellulosic ethanol technology process.            956
  • Figure 296: Plantrose process.    961
  • Figure 297. The Velocys process.               976
  • Figure 298. Goldilocks process and applications. 979
  • Figure 299. Paints and coatings industry by market segmentation 2019-2020.        984
  • Figure 300. PHA family. 1003
  • Figure 301: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 1008
  • Figure 302: Scale of cellulose materials.  1009
  • Figure 303. Nanocellulose preparation methods and resulting materials. 1010
  • Figure 304: Relationship between different kinds of nanocelluloses.         1012
  • Figure 305. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1019
  • Figure 306: CNC slurry.  1020
  • Figure 307. High purity lignin.     1023
  • Figure 308. BLOOM masterbatch from Algix.        1028
  • Figure 309. Global market revenues for biobased paints and coatings, 2018-2033 (billions USD).  1030
  • Figure 310. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), conservative estimate. 1031
  • Figure 311. Market revenues for biobased paints and coatings, 2018-2033 (billions USD), high      1033
  • Figure 312. Dulux Better Living Air Clean Biobased.           1035
  • Figure 313: NCCTM Process.        1057
  • Figure 314: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:         1057
  • Figure 315. Cellugy materials.     1059
  • Figure 316. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right).       1063
  • Figure 317. Rheocrysta spray.     1069
  • Figure 318. DKS CNF products.   1070
  • Figure 319. Domsjö process.       1071
  • Figure 320. CNF gel.        1087
  • Figure 321. Block nanocellulose material.              1087
  • Figure 322. CNF products developed by Hokuetsu.            1088
  • Figure 323. BioFlex process.        1101
  • Figure 324. Marusumi Paper cellulose nanofiber products.            1104
  • Figure 325: Fluorene cellulose ® powder.              1123
  • Figure 326. XCNF.            1128
  • Figure 327. Spider silk production.            1137
  • Figure 328. CNF dispersion and powder from Starlite.      1139
  • Figure 329. 2 wt.% CNF suspension.       1143
  • Figure 330. BiNFi-s Dry Powder. 1143
  • Figure 331. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.          1144
  • Figure 332. Silk nanofiber (right) and cocoon of raw material.       1144
  • Figure 333. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.     1149
  • Figure 334. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.        1150
  • Figure 335. Bioalkyd products.   1154

 

 

 

 

 

 

 

The Global Market for Biobased Chemicals, Materials, Polymers, Plastics, Paints & Coatings and Fuels to 2033
The Global Market for Biobased Chemicals, Materials, Polymers, Plastics, Paints & Coatings and Fuels to 2033
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com