The Global Market for Biofuels and E-Fuels 2025-2035

0

cover

  • Published: October 2024
  • Pages: 446
  • Tables: 147
  • Figures: 110

 

Biofuels, derived from renewable biomass sources, have established a significant presence in the market, with ethanol and biodiesel leading the way. These conventional biofuels have benefited from supportive government policies and mandates, particularly in the United States, Brazil, and the European Union. However, concerns about food security and land use have prompted a shift towards advanced biofuels produced from non-food feedstocks and waste materials. Emerging as a promising complement to biofuels, e-fuels (also known as synthetic fuels or power-to-X fuels) are gaining attention for their potential to provide carbon-neutral liquid fuels. Produced by combining green hydrogen with captured carbon dioxide, e-fuels offer a way to store renewable electricity in a form compatible with existing infrastructure and engines. 

The market for both biofuels and e-fuels is being shaped by a complex interplay of factors including technological advancements, policy support, and shifting consumer preferences. The aviation sector, in particular, is emerging as a key driver for sustainable fuel adoption, with sustainable aviation fuel (SAF) becoming a focus for airlines and fuel producers alike. As production scales up and costs decrease, these sustainable fuels are expected to play an increasingly important role in decarbonizing hard-to-abate sectors like long-distance transport and heavy industry.

This comprehensive market report provides an in-depth analysis of the global biofuels and e-fuels markets, covering the crucial period from 2025 to 2035. As the world seeks to decarbonize the transportation sector and reduce dependence on fossil fuels, biofuels and e-fuels are emerging as key players in the transition to sustainable energy. Report contents include: 

  • Role of biofuels and e-fuels in decarbonization efforts, their comparison to fossil fuels, and their place in the circular economy. Analysis of government policies, market drivers, and challenges shaping the industry.
  • Comprehensive market forecasts for liquid biofuels from 2020 to 2035, broken down by type and production. 
  • Sustainability aspects of biofuels, addressing concerns about land use, food security, and lifecycle emissions.
  • Key industry developments from 2022 to 2024, providing insight into recent technological advancements, policy changes, and market trends.
  • Biofuel Types and Technologies: Detailed analysis of various biofuel types, including solid, liquid, and gaseous biofuels, as well as conventional and advanced biofuels. The report covers production processes, feedstocks, and emerging technologies.
  • Feedstock Analysis: biofuel feedstocks, from first-generation crops to advanced feedstocks like algae and waste materials. The report includes SWOT analyses for different feedstock categories.
  • Hydrocarbon Biofuels: biodiesel, renewable diesel, sustainable aviation fuel (SAF), and bio-naphtha, including production processes, market trends, and key players.
  • Alcohol Fuels: biomethanol, bioethanol, and biobutanol markets, including production pathways, applications, and market forecasts.
  • Biomass-Based Gas: biogas, biomethane, biosyngas, and biohydrogen, including feedstocks, production processes, and market applications.
  • Chemical Recycling for Biofuels: emerging technologies for converting plastic waste and used tires into biofuels, including pyrolysis and gasification processes.
  • E-Fuels: electrofuels (e-fuels), covering production pathways, market challenges, and key players in this emerging sector.
  • Algae-Derived Biofuels:  potential for algae-based biofuels, including production pathways, market challenges, and key players.
  • Green Ammonia: green ammonia as a potential energy carrier and fuel, including production methods, applications, and market projections.
  • Carbon Capture for Biofuels: technologies and market potential for producing biofuels from captured carbon dioxide, including direct air capture (DAC) processes.
  • Company Profiles: Over 230 detailed company profiles covering key players across the biofuels and e-fuels value chain, from feedstock providers to technology developers and fuel producers. Companies profiled include Aduro Clean Technologies, Aemetis, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Alpha Biofuels, AM Green, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Arcadia eFuels, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, Bio-Oils, BIOD Energy, Biofy, Biofine Technology, BiogasClean, Biojet, Bloom Biorenewables, BlueAlp Technology, Blue BioFuels, Braven Environmental, Brightmark Energy, bse Methanol, BTG Bioliquids, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cargill, Cassandra Oil, Casterra Ag, Celtic Renewables, Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chitose Bio Evolution, Circla Nordic, CleanJoule, Climeworks, CNF Biofuel, Concord Blue Engineering, Cool Planet Energy Systems, Corsair Group International, Coval Energy, Crimson Renewable Energy, C-Zero, D-CRBN, Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, Domsjö Fabriker, DuPont, EcoCeres, Eco Environmental, Eco Fuel Technology, Electro-Active Technologies, Emerging Fuels Technology (EFT), Encina Development Group, Enerkem, Eneus Energy, Enexor BioEnergy, Eni Sustainable Mobility, Ensyn, EnviTec Biogas, Euglena, Firefly Green Fuels, Forge Hydrocarbons, FuelPositive, Fuenix Ecogy, Fulcrum BioEnergy, Galp Energia, GenCell Energy, Genecis Bioindustries, Gevo, GIDARA Energy, Graforce Hydro, Granbio Technologies, Greenergy, Green COP, Green Earth Institute, Green Fuel, Hago Energetics, Haldor Topsoe, Handerek Technologies, Hero BX, Honeywell, HutanBio, Hyundai Oilbank, Hy2Gen, Hydrogenious LOHC, HYCO1, HydGene Renewables, Ineratec, Infinitree, Infinium Electrofuels, Innoltek, Jet Zero Australia, Jilin COFCO Biomaterial, Jupiter Ionics, Kaidi, Kanteleen Voima, Khepra, Klean Industries, Krajete, Kvasir Technologies, LanzaJet, Lanzatech, Lectrolyst, Licella, Liquid Wind, Lootah Biofuels, Lummus Technology, LXP Group, Manta Biofuel, Mash Energy, Mercurius Biorefining, MOFWORX, Mote, Neogen, NeoZeo, Neste, New Hope Energy, NewEnergyBlue, NextChem, Nexus Fuels, Nordic ElectroFuel, Nordsol, Norsk e-Fuel, Nova Pangaea Technologies, Novozymes, Obeo Biogas, Oberon Fuels, Obrist Group, Oceania Biofuels, O.C.O, OMV, Opus 12 and many more. 

 

Key Topics Covered:

  • Biodiesel and Renewable Diesel
  • Sustainable Aviation Fuel (SAF)
  • Bio-naphtha
  • Biomethanol and Bioethanol
  • Biogas and Biomethane
  • E-fuels and Power-to-X Technologies
  • Algae-based Biofuels
  • Green Ammonia
  • Carbon Capture and Utilization in Fuel Production
  • Chemical Recycling of Waste to Biofuels
  • Pyrolysis Oil and Bio-oils
  • Refuse-Derived Fuels (RDF)

1             RESEARCH METHODOLOGY              25

 

2             EXECUTIVE SUMMARY            26

  • 2.1        Decarbonization          26
  • 2.2        Comparison to fossil fuels    27
  • 2.3        Role in the circular economy               27
  • 2.4        Government policies 28
  • 2.5        Market drivers                29
  • 2.6        Market challenges      30
  • 2.7        Liquid biofuels market             30
    • 2.7.1    Liquid biofuel production and consumption (in thousands of m3), 2000-2022 30
    • 2.7.2    Liquid biofuels market 2020-2035, by type and production.          32
  • 2.8        Sustainability of biofuels       33

 

3             INDUSTRY DEVELOPMENTS 2022-2024      37

 

4             BIOFUELS        41

  • 4.1        Overview           41
  • 4.2        The global biofuels market    42
    • 4.2.1    Diesel substitutes and alternatives 43
    • 4.2.2    Gasoline substitutes and alternatives           44
  • 4.3        SWOT analysis: Biofuels market        44
  • 4.4        Comparison of biofuel costs 2024, by type                45
  • 4.5        Types   45
    • 4.5.1    Solid Biofuels 45
    • 4.5.2    Liquid Biofuels              46
    • 4.5.3    Gaseous Biofuels       47
    • 4.5.4    Conventional Biofuels             47
    • 4.5.5    Advanced Biofuels     48
  • 4.6        Refineries         48
  • 4.7        Feedstocks      50
    • 4.7.1    First-generation (1-G)               51
    • 4.7.2    Second-generation (2-G)       52
      • 4.7.2.1 Lignocellulosic wastes and residues             53
      • 4.7.2.2 Biorefinery lignin         54
    • 4.7.3    Third-generation (3-G)             57
      • 4.7.3.1 Algal biofuels 57
        • 4.7.3.1.1           Properties         58
        • 4.7.3.1.2           Advantages     58
    • 4.7.4    Fourth-generation (4-G)          60
    • 4.7.5    Advantages and disadvantages, by generation        60
    • 4.7.6    Energy crops  61
      • 4.7.6.1 Feedstocks      61
      • 4.7.6.2 SWOT analysis              62
    • 4.7.7    Agricultural residues 62
      • 4.7.7.1 Feedstocks      62
      • 4.7.7.2 SWOT analysis              63
    • 4.7.8    Manure, sewage sludge and organic waste                64
      • 4.7.8.1 Processing pathways                64
      • 4.7.8.2 SWOT analysis              64
    • 4.7.9    Forestry and wood waste       65
      • 4.7.9.1 Feedstocks      65
      • 4.7.9.2 SWOT analysis              66
    • 4.7.10 Feedstock costs          67

 

5             HYDROCARBON BIOFUELS 68

  • 5.1        Biodiesel           68
    • 5.1.1    Biodiesel by generation           69
    • 5.1.2    SWOT analysis              71
    • 5.1.3    Production of biodiesel and other biofuels 72
      • 5.1.3.1 Pyrolysis of biomass 72
      • 5.1.3.2 Vegetable oil transesterification       75
      • 5.1.3.3 Vegetable oil hydrogenation (HVO)  76
        • 5.1.3.3.1           Production process   76
      • 5.1.3.4 Biodiesel from tall oil                77
      • 5.1.3.5 Fischer-Tropsch BioDiesel     77
      • 5.1.3.6 Hydrothermal liquefaction of biomass         79
      • 5.1.3.7 CO2 capture and Fischer-Tropsch (FT)          79
      • 5.1.3.8 Dymethyl ether (DME)              80
    • 5.1.4    Biodiesel Projects       81
    • 5.1.5    Recent market developments 2023-2024  82
    • 5.1.6    Prices  82
    • 5.1.7    Companies     83
    • 5.1.8    Global consumption 84
  • 5.2        Renewable diesel        85
    • 5.2.1    Production       86
    • 5.2.2    SWOT analysis              86
    • 5.2.3    Global consumption 87
    • 5.2.4    Prices  89
  • 5.3        Sustainable aviation fuel (SAF)           89
    • 5.3.1    Description     89
    • 5.3.2    Recent market developments             90
    • 5.3.3    SWOT analysis              92
    • 5.3.4    Global production and consumption            93
    • 5.3.5    Production pathways                93
    • 5.3.6    Prices  95
    • 5.3.7    Sustainable aviation fuel production capacities    95
    • 5.3.8    Challenges      96
    • 5.3.9    Companies     97
    • 5.3.10 Global consumption 98
  • 5.4        Bio-naphtha   99
    • 5.4.1    Overview           99
    • 5.4.2    SWOT analysis              100
    • 5.4.3    Markets and applications      101
    • 5.4.4    Prices  102
    • 5.4.5    Production capacities, by producer, current and planned               103
    • 5.4.6    Production capacities, total (tonnes), historical, current and planned   104

 

6             ALCOHOL FUELS        105

  • 6.1        Biomethanol  105
    • 6.1.1    SWOT analysis              106
    • 6.1.2    Methanol-to gasoline technology     107
      • 6.1.2.1 Production processes              108
        • 6.1.2.1.1           Biomethanol from Biogas Reforming             109
        • 6.1.2.1.2           Biomethanol from Hydrothermal Gasification         110
        • 6.1.2.1.3           Anaerobic digestion  110
        • 6.1.2.1.4           Biomass gasification 111
        • 6.1.2.1.5           Power to Methane       112
    • 6.1.3    Methanol Synthesis Companies       112
  • 6.2        Bioethanol       113
    • 6.2.1    Technology description           113
    • 6.2.2    1G Bio-Ethanol             114
    • 6.2.3    SWOT analysis              115
    • 6.2.4    Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol     115
      • 6.2.4.1 ATJ and ATG processes            116
      • 6.2.4.2 Ethanol Feedstocks   116
      • 6.2.4.3 Methanol-to-Gasoline (MTG) and Methanol-to-Jet (MTJ) processes          118
      • 6.2.4.4 Companies     119
    • 6.2.5    Cellulosic Ethanol Production            120
    • 6.2.6    Sulfite spent liquor fermentation      123
    • 6.2.7    Gasification    124
      • 6.2.7.1 Biomass gasification and syngas fermentation       124
      • 6.2.7.2 Biomass gasification and syngas thermochemical conversion    124
    • 6.2.8    CO2 capture and alcohol synthesis               124
    • 6.2.9    Biomass hydrolysis and fermentation           125
      • 6.2.9.1 Separate hydrolysis and fermentation           125
      • 6.2.9.2 Simultaneous saccharification and fermentation (SSF)    126
      • 6.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      126
      • 6.2.9.4 Simultaneous saccharification and co-fermentation (SSCF)         126
      • 6.2.9.5 Direct conversion (consolidated bioprocessing) (CBP)      126
      • 6.2.10 Global ethanol consumption              127
  • 6.3        Biobutanol      128
    • 6.3.1    Production       129
    • 6.3.2    Prices  130

 

7             BIOMASS-BASED GAS              131

  • 7.1        Feedstocks      132
    • 7.1.1    Biomethane    132
    • 7.1.2    Production pathways                134
      • 7.1.2.1 Landfill gas recovery 134
      • 7.1.2.2 Anaerobic digestion  134
      • 7.1.2.3 Thermal gasification 135
    • 7.1.3    SWOT analysis              135
    • 7.1.4    Global production      136
    • 7.1.5    Prices  137
      • 7.1.5.1 Raw Biogas     137
      • 7.1.5.2 Upgraded Biomethane            137
    • 7.1.6    Bio-LNG             138
      • 7.1.6.1 Markets              138
        • 7.1.6.1.1           Trucks 138
        • 7.1.6.1.2           Marine 138
      • 7.1.6.2 Production       139
      • 7.1.6.3 Plants 139
    • 7.1.7    bio-CNG (compressed natural gas derived from biogas)  140
    • 7.1.8    Carbon capture from biogas               140
  • 7.2        Biosyngas        141
    • 7.2.1    Production       141
    • 7.2.2    Prices  142
  • 7.3        Biohydrogen   142
    • 7.3.1    Description     142
    • 7.3.2    SWOT analysis              143
    • 7.3.3    Production of biohydrogen from biomass  144
      • 7.3.3.1 Biological Conversion Routes             144
        • 7.3.3.1.1           Bio-photochemical Reaction              144
        • 7.3.3.1.2           Fermentation and Anaerobic Digestion        144
      • 7.3.3.2 Thermochemical conversion routes               145
        • 7.3.3.2.1           Biomass Gasification               145
        • 7.3.3.2.2           Biomass Pyrolysis      145
        • 7.3.3.2.3           Biomethane Reforming           145
    • 7.3.4    Applications   146
    • 7.3.5    Prices  147
  • 7.4        Biochar in biogas production              147
  • 7.5        Bio-DME            147

 

8             CHEMICAL RECYCLING FOR BIOFUELS      148

  • 8.1        Plastic pyrolysis           148
  • 8.2        Used tires pyrolysis   149
    • 8.2.1    Conversion to biofuel               150
  • 8.3        Co-pyrolysis of biomass and plastic wastes             151
  • 8.4        Gasification    151
    • 8.4.1    Syngas conversion to methanol        152
    • 8.4.2    Biomass gasification and syngas fermentation       155
    • 8.4.3    Biomass gasification and syngas thermochemical conversion    156
  • 8.5        Hydrothermal cracking           156
  • 8.6        SWOT analysis              157

 

9             ELECTROFUELS (E-FUELS)   158

  • 9.1        Introduction    158
    • 9.1.1    Costs  160
    • 9.1.2    Benefits of e-fuels       161
    • 9.1.3    Production pathways                162
  • 9.2        Green hydrogen            163
    • 9.2.1    Electrolyzer Technologies      164
  • 9.3        CO2 capture   165
    • 9.3.1    Overview           165
    • 9.3.2    CO₂ Capture Systems              166
    • 9.3.3    Direct Air Capture (DAC) technology for e-fuel production              169
  • 9.4        Syngas production     169
    • 9.4.1    Overview           169
    • 9.4.2    Syngas Production Technologies      170
      • 9.4.2.1 Reverse Water Gas Shift (RWGS)      170
      • 9.4.2.2 Direct Fischer-Tropsch Synthesis: CO₂ to Hydrocarbons  171
      • 9.4.2.3 Low-Temperature Electrochemical CO₂ Reduction              171
      • 9.4.2.4 Solid Oxide Electrolysis Cells (SOECs)         171
    • 9.4.3    Solar power in E-Fuels             173
      • 9.4.3.1 Overview           173
      • 9.4.3.2 Key advantages            173
      • 9.4.3.3 Projects             173
    • 9.4.4    Companies     173
  • 9.5        E-methane       177
    • 9.5.1    Overview           177
    • 9.5.2    Methanation   177
      • 9.5.2.1 Thermocatalytic methanation            178
      • 9.5.2.2 Biological methanation           178
      • 9.5.2.3 Companies     180
  • 9.6        E-methanol     181
    • 9.6.1    Overview           181
    • 9.6.2    E-Methanol Production           181
    • 9.6.3    Direct methanol synthesis    184
    • 9.6.4    Companies     185
  • 9.7        SWOT analysis              186
  • 9.8        Production       187
    • 9.8.1    eFuel production facilities, current and planned   189
  • 9.9        Electrolysers   190
  • 9.10     Prices  191
  • 9.11     Market challenges      193
  • 9.12     Companies     193

 

10          ALGAE-DERIVED BIOFUELS 195

  • 10.1     Technology description           195
  • 10.2     CO₂ capture and utilization  196
  • 10.3     Conversion pathways               196
    • 10.3.1 Macroalgae     197
    • 10.3.2 Microalgae / Cyanobacteria 198
      • 10.3.2.1            Microalgae cultivation for biofuel production           199
      • 10.3.2.2            Open cultivation systems      200
      • 10.3.2.3            Closed photobioreactors (PBRs)      201
    • 10.3.3 Companies     202
    • 10.3.4 Projects             203
  • 10.4     SWOT analysis              205
  • 10.5     Production       205
    • 10.5.1 Algal Biofuel Production         206
  • 10.6     Market challenges      207
  • 10.7     Prices  208
  • 10.8     Producers         209

 

11          GREEN AMMONIA       210

  • 11.1     Production       210
    • 11.1.1 Decarbonisation of ammonia production  212
    • 11.1.2 Green ammonia projects       212
  • 11.2     Green ammonia synthesis methods              212
    • 11.2.1 Haber-Bosch process              212
    • 11.2.2 Biological nitrogen fixation   213
    • 11.2.3 Electrochemical production                213
    • 11.2.4 Chemical looping processes               214
  • 11.3     SWOT analysis              214
  • 11.4     Blue ammonia              215
    • 11.4.1 Blue ammonia projects           215
  • 11.5     Markets and applications      215
    • 11.5.1 Chemical energy storage       215
      • 11.5.1.1            Ammonia fuel cells    215
    • 11.5.2 Marine fuel      216
  • 11.6     Prices  218
  • 11.7     Estimated market demand   219
  • 11.8     Companies and projects        220

 

12          BIOFUELS FROM CARBON CAPTURE            221

  • 12.1     Overview           222
  • 12.2     CO2 capture from point sources      224
  • 12.3     Production routes       224
  • 12.4     SWOT analysis              225
  • 12.5     Direct air capture (DAC)         226
    • 12.5.1 Description     226
    • 12.5.2 Deployment    227
    • 12.5.3 Point source carbon capture versus Direct Air Capture     228
    • 12.5.4 Technologies  228
      • 12.5.4.1            Solid sorbents               230
      • 12.5.4.2            Liquid sorbents            231
      • 12.5.4.3            Liquid solvents             232
      • 12.5.4.4            Airflow equipment integration            232
      • 12.5.4.5            Passive Direct Air Capture (PDAC)   232
      • 12.5.4.6            Direct conversion        233
      • 12.5.4.7            Co-product generation            233
      • 12.5.4.8            Low Temperature DAC             233
      • 12.5.4.9            Regeneration methods            233
    • 12.5.5 Commercialization and plants           234
    • 12.5.6 Metal-organic frameworks (MOFs) in DAC  235
    • 12.5.7 DAC plants and projects-current and planned        235
    • 12.5.8 Markets for DAC           240
    • 12.5.9 Costs  241
    • 12.5.10              Challenges      245
    • 12.5.11              Players and production           246
  • 12.6     Carbon utilization for biofuels            246
    • 12.6.1 Production routes       250
      • 12.6.1.1            Electrolyzers   251
      • 12.6.1.2            Low-carbon hydrogen              251
    • 12.6.2 Products & applications         252
      • 12.6.2.1            Vehicles             252
      • 12.6.2.2            Shipping            253
      • 12.6.2.3            Aviation              253
      • 12.6.2.4            Costs  254
      • 12.6.2.5            Ethanol              254
      • 12.6.2.6            Methanol          255
      • 12.6.2.7            Sustainable Aviation Fuel      258
      • 12.6.2.8            Methane            258
      • 12.6.2.9            Algae based biofuels 259
      • 12.6.2.10         CO₂-fuels from solar 260
    • 12.6.3 Challenges      262
    • 12.6.4 SWOT analysis              263
    • 12.6.5 Companies     263

 

13          BIO-OILS (PYROLYSIS OIL)    266

  • 13.1     Description     266
    • 13.1.1 Advantages of bio-oils             266
  • 13.2     Production       267
    • 13.2.1 Biomass Pyrolysis      268
    • 13.2.2 Plastic Waste Pyrolysis            269
    • 13.2.3 Catalytic Pyrolysis of Plastic                271
    • 13.2.4 Costs of production  271
    • 13.2.5 Upgrading        271
  • 13.3     Pyrolysis reactors        273
  • 13.4     SWOT analysis              274
  • 13.5     Applications   275
  • 13.6     Bio-oil producers         275
  • 13.7     Prices  276

 

14          REFUSE-DERIVED FUELS (RDF)        277

  • 14.1     Overview           277
  • 14.2     Production       277
    • 14.2.1 Production process   277
    • 14.2.2 Mechanical biological treatment      278
  • 14.3     Markets              278

 

15          COMPANY PROFILES                280 (238 company profiles)

 

16          REFERENCES 435

 

List of Tables

  • Table 1. Market drivers for biofuels. 29
  • Table 2. Market challenges for biofuels.       30
  • Table 3. Liquid biofuels market 2020-2035, by type and production.        32
  • Table 4. Industry developments in biofuels 2022-2024.   37
  • Table 5. Comparison of biofuels.      41
  • Table 6. Comparison of biofuel costs (USD/liter) 2024, by type.   45
  • Table 7. Categories and examples of solid biofuel.               46
  • Table 8. Comparison of biofuels and e-fuels to fossil and electricity.       48
  • Table 9. Classification of biomass feedstock.          50
  • Table 10. Biorefinery feedstocks.     51
  • Table 11. Feedstock conversion pathways.                51
  • Table 12. First-Generation Feedstocks.        51
  • Table 13.  Lignocellulosic ethanol plants and capacities. 54
  • Table 14. Comparison of pulping and biorefinery lignins. 55
  • Table 15. Commercial and pre-commercial biorefinery lignin production facilities and  processes    55
  • Table 16. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.      57
  • Table 17. Properties of microalgae and macroalgae.          58
  • Table 18. Yield of algae and other biodiesel crops.               59
  • Table 19. Advantages and disadvantages of biofuels, by generation.       60
  • Table 20. Biodiesel by generation.    69
  • Table 21. Comparison of Fossil Diesel, Biodiesel & Renewable Diesel.  70
  • Table 22. Biodiesel production techniques.              72
  • Table 23. Summary of pyrolysis technique under different operating conditions.            73
  • Table 24. Biomass materials and their bio-oil yield.             74
  • Table 25. Biofuel production cost from the biomass pyrolysis process. 74
  • Table 26. Properties of vegetable oils in comparison to diesel.     75
  • Table 27. Main producers of HVO and capacities. 77
  • Table 28. Example commercial Development of BtL processes. 77
  • Table 29. Pilot or demo projects for biomass to liquid (BtL) processes.  78
  • Table 30. Comparison of Biodiesel vs Renewable Diesel: Properties & Engine Compatibility. 80
  • Table 31. Biodiesel Projects by Scale, Company and Location.   81
  • Table 32. Recent biodiesel market developments 2023-2024.     82
  • Table 33. Recent company activity in Biodiesel.     83
  • Table 34. Global biodiesel consumption, 2020-2035 (M litres/year).        84
  • Table 35. Global renewable diesel consumption, 2020-2035 (M litres/year).      88
  • Table 36. Renewable diesel price ranges.   89
  • Table 37. Advantages and disadvantages of Sustainable aviation fuel.   90
  • Table 38. Recent market developments in Sustainable Aviation Fuel (SAF).        90
  • Table 39. Production pathways for Sustainable aviation fuel.        93
  • Table 40. Sustainable Aviation Fuel (SAF) Projects by Scale, Company, Location, Technology Pathway, and Start Date.              95
  • Table 41. Recent company activity in SAF.  97
  • Table 42. Global Sustainable Aviation Fuel (SAF) Consumption 2019-2035 (Million litres/year).           98
  • Table 43. Bio-based naphtha markets and applications. 101
  • Table 44. Bio-naphtha market value chain.               101
  • Table 45. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.               102
  • Table 46. Bio-based Naphtha production capacities, by producer.           103
  • Table 47.Methanol Production & Colors      105
  • Table 48. Main Pathways to Biomethanol Production         106
  • Table 49. Comparison of biogas, biomethane and natural gas.   108
  • Table 50. 1st Generation Bioethanol Production Processes.          114
  • Table 51.Ethanol Feedstocks.            116
  • Table 52. Methanol Feedstocks.        117
  • Table 53. Methanol-to-Gasoline (MTG) Process Overview.              117
  • Table 54. Alcohol-to-Jet (ATJ) Process Steps.            118
  • Table 55. MTG vs MTJ Process Comparison.             118
  • Table 56. Methanol-to-Gasoline (MTG) Companies.           119
  • Table 57. Alcohol-to-Jet (ATJ) Technology Companies.      120
  • Table 58. Cellulosic Ethanol Production.    121
  • Table 59. Lignocellulosic Biomass Feedstocks.     121
  • Table 60. Challenges in Breaking Down Lignocellulosic Biomass.             121
  • Table 61.  Processes in bioethanol production.     125
  • Table 62. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.               126
  • Table 63. Ethanol consumption 2020-2035 (million litres).             127
  • Table 64. Properties of petrol and biobutanol.         129
  • Table 65. Biogas feedstocks.               132
  • Table 66. Existing and planned bio-LNG production plants.           139
  • Table 67. Methods for capturing carbon dioxide from biogas.       140
  • Table 68. Comparison of different Bio-H2 production pathways.                144
  • Table 69. Markets and applications for biohydrogen.          146
  • Table 70. Summary of gasification technologies.  151
  • Table 71. Overview of hydrothermal cracking for advanced chemical recycling.              156
  • Table 72. Technology & Process Developers in E-Fuels by End-Product.                159
  • Table 73. E-Fuel Production Costs Breakdown.      160
  • Table 74. Applications of e-fuels, by type.   160
  • Table 75. Overview of e-fuels.             161
  • Table 76. Benefits of e-fuels.               161
  • Table 77. E-fuel production efficiencies.     162
  • Table 78. Production Pathways for E-Fuels.               162
  • Table 79. Electrolyzer Performance Metrics.             164
  • Table 80. Overview of Electrolyzer Technologies.   164
  • Table 81. Electrolyzer Technology Companies.       165
  • Table 82. Main CO₂ Capture Systems.          166
  • Table 83.Technologies for Carbon Capture 166
  • Table 84. Syngas Production Technologies for E-Fuels.     170
  • Table 85. Comparison of RWGS & SOEC Co-Electrolysis Routes.              172
  • Table 86.Companies using Reverse Water Gas Shift (RWGS) for E-Fuels               174
  • Table 87. SOEC & SOFC System Suppliers.               175
  • Table 88. Companies in CO₂ reduction technologies.        176
  • Table 89. Comparison of Thermocatalytic vs Biocatalytic Methanation 179
  • Table 90. Methanation Companies 180
  • Table 91. Power-to-Methane Projects,          180
  • Table 92. Methanol Production & Colors.    181
  • Table 93. E-methanol production methods.              181
  • Table 94. Main process steps, key equipment, and operating conditions.            183
  • Table 95.Companies in Methanol Synthesis              185
  • Table 96. eFuel production facilities, current and planned.            189
  • Table 97. Main characteristics of different electrolyzer technologies.     190
  • Table 98. Market challenges for e-fuels.       193
  • Table 99. E-fuels companies.              193
  • Table 100. 3rd Generation Biofuel Production Feedstocks              195
  • Table 101. Biofuel Production Process Using Macroalgae               197
  • Table 102. Biofuel Production Process Using Microalgae / Cyanobacteria.         198
  • Table 103. Open vs Closed Algae Cultivation Systems.     202
  • Table 104. Microalgae Cultivation System Suppliers: Photobioreactors (PBRs) & Ponds.          202
  • Table 105. Algal and Microbial Biofuel Processes & Projects.        203
  • Table 106. Algae-derived biofuel producers.             209
  • Table 107. Green ammonia projects (current and planned).          212
  • Table 108. Blue ammonia projects. 215
  • Table 109. Ammonia fuel cell technologies.              216
  • Table 110. Market overview of green ammonia in marine fuel.      217
  • Table 111. Summary of marine alternative fuels.   217
  • Table 112. Estimated costs for different types of ammonia.          218
  • Table 113. Main players in green ammonia.              220
  • Table 114. Market overview for CO2 derived fuels.               222
  • Table 115. Point source examples.  224
  • Table 116. Advantages and disadvantages of DAC.              227
  • Table 117. Companies developing airflow equipment integration with DAC.      232
  • Table 118. Companies developing Passive Direct Air Capture (PDAC) technologies.    232
  • Table 119. Companies developing regeneration methods for DAC technologies.            233
  • Table 120. DAC companies and technologies.        234
  • Table 121. DAC technology developers and production.  236
  • Table 122. DAC projects in development.   239
  • Table 123. Markets for DAC. 241
  • Table 124. Costs summary for DAC.               241
  • Table 125. Cost estimates of DAC.  243
  • Table 126. Challenges for DAC technology.               245
  • Table 127. DAC companies and technologies.        246
  • Table 128. Market overview for CO2 derived fuels.               248
  • Table 129. Main production routes and processes for manufacturing fuels from captured carbon dioxide.              250
  • Table 130. CO₂-derived fuels projects.         252
  • Table 131. Thermochemical methods to produce methanol from CO2. 256
  • Table 132. Pilot plants for CO2-to-methanol conversion. 258
  • Table 133. Microalgae products and prices.              260
  • Table 134. Main Solar-Driven CO2 Conversion Approaches.         261
  • Table 135. Market challenges for CO2 derived fuels.           262
  • Table 136. Companies in CO2-derived fuel products.        263
  • Table 137. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          266
  • Table 138. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                267
  • Table 139. Comparison of Pyrolysis Technologies.               267
  • Table 140. Pyrolysis Products & Market Applications.        269
  • Table 141. Main techniques used to upgrade bio-oil into higher-quality fuels.   272
  • Table 142. Pyrolysis reactor companies.     273
  • Table 143. Markets and applications for bio-oil.     275
  • Table 144. Bio-oil producers.              275
  • Table 145. Key resource recovery technologies       277
  • Table 146. Markets and end uses for refuse-derived fuels (RDF).                278
  • Table 147. Granbio Nanocellulose Processes.        345

 

List of Figures

  • Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2023.          31
  • Figure 2. Distribution of global liquid biofuel production in 2023.              32
  • Figure 3. Diesel and gasoline alternatives and blends.      43
  • Figure 4. SWOT analysis for biofuels.             45
  • Figure 5.  Schematic of a biorefinery for production of carriers and chemicals.                55
  • Figure 6. SWOT analysis for energy crops in biofuels.         62
  • Figure 7. SWOT analysis for agricultural residues in biofuels.       64
  • Figure 8. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.      65
  • Figure 9. SWOT analysis for forestry and wood waste in biofuels.              67
  • Figure 10. Range of biomass cost by feedstock type.          67
  • Figure 11. Regional production of biodiesel (billion litres).              69
  • Figure 12. SWOT analysis for biodiesel.       72
  • Figure 13. Flow chart for biodiesel production.       75
  • Figure 14. Biodiesel (B20) average prices, current and historical, USD/litre, 2012-2023.           83
  • Figure 15. Global biodiesel consumption, 2020-2035 (M litres/year).      85
  • Figure 16. SWOT analysis for renewable iesel.         87
  • Figure 17. Global renewable diesel consumption, 2010-2035 (M litres/year).    88
  • Figure 18. SWOT analysis for Sustainable aviation fuel.    92
  • Figure 19. Global Sustainable Aviation Fuel (SAF) Production and Consumption 2019-2035 (Million litres/year).      99
  • Figure 20. SWOT analysis for bio-naphtha. 101
  • Figure 21. Bio-based naphtha production capacities, 2018-2033 (tonnes).        104
  • Figure 22. SWOT analysis biomethanol.      107
  • Figure 23. Renewable Methanol Production Processes from Different Feedstocks.       108
  • Figure 24. Production of biomethane through anaerobic digestion and upgrading.        111
  • Figure 25. Production of biomethane through biomass gasification and methanation.               111
  • Figure 26. Production of biomethane through the Power to methane process.  112
  • Figure 27. SWOT analysis for ethanol.           115
  • Figure 28. Ethanol consumption 2020-2035 (million litres).           128
  • Figure 29. Biobutanol production route.      129
  • Figure 30. Biogas and biomethane pathways.          132
  • Figure 31. Overview of biogas utilization.    133
  • Figure 32. Schematic overview of anaerobic digestion process for biomethane production.   135
  • Figure 33. Schematic overview of biomass gasification for biomethane production.    135
  • Figure 34. SWOT analysis for biogas.             136
  • Figure 35. Total syngas market by product in MM Nm³/h of Syngas, 2023.           141
  • Figure 36. SWOT analysis for biohydrogen. 143
  • Figure 37. Waste plastic production pathways to (A) diesel and (B) gasoline      148
  • Figure 38. Schematic for Pyrolysis of Scrap Tires. 149
  • Figure 39. Used tires conversion process.  150
  • Figure 40. Total syngas market by product in MM Nm³/h of Syngas, 2023.           152
  • Figure 41. Overview of biogas utilization.    154
  • Figure 42. Biogas and biomethane pathways.          155
  • Figure 43. SWOT analysis for chemical recycling of biofuels.        157
  • Figure 44. Process steps in the production of electrofuels.             158
  • Figure 45. Mapping storage technologies according to performance characteristics.  159
  • Figure 46. Production process for green hydrogen.              163
  • Figure 47. SWOT analysis for E-fuels.            186
  • Figure 48. E-liquids production routes.        187
  • Figure 49. Fischer-Tropsch liquid e-fuel products. 188
  • Figure 50. Resources required for liquid e-fuel production.            188
  • Figure 51. Levelized cost and fuel-switching CO2 prices of e-fuels.          192
  • Figure 52.  Pathways for algal biomass conversion to biofuels.    197
  • Figure 53. SWOT analysis for algae-derived biofuels.         205
  • Figure 54. Algal biomass conversion process for biofuel production.      206
  • Figure 55. Classification and process technology according to carbon emission in ammonia production.     210
  • Figure 56. Green ammonia production and use.    211
  • Figure 57. Schematic of the Haber Bosch ammonia synthesis reaction.               213
  • Figure 58. Schematic of hydrogen production via steam methane reformation.               213
  • Figure 59. SWOT analysis for green ammonia.        214
  • Figure 60. Estimated production cost of green ammonia.               219
  • Figure 61. Projected annual ammonia production, million tons to 2050.              220
  • Figure 62. CO2 capture and separation technology.            221
  • Figure 63. Conversion route for CO2-derived fuels and chemical intermediates.            223
  • Figure 64.  Conversion pathways for CO2-derived methane, methanol and diesel.        223
  • Figure 65. SWOT analysis for biofuels from carbon capture.          225
  • Figure 66. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        226
  • Figure 67. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            227
  • Figure 68.  DAC technologies.             229
  • Figure 69. Schematic of Climeworks DAC system.               230
  • Figure 70. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                231
  • Figure 71.  Flow diagram for solid sorbent DAC.     231
  • Figure 72. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.           232
  • Figure 73. Global capacity of direct air capture facilities. 236
  • Figure 74. Global map of DAC and CCS plants.      240
  • Figure 75. Schematic of costs of DAC technologies.           242
  • Figure 76. DAC cost breakdown and comparison. 243
  • Figure 77. Operating costs of generic liquid and solid-based DAC systems.       245
  • Figure 78. Conversion route for CO2-derived fuels and chemical intermediates.            249
  • Figure 79.  Conversion pathways for CO2-derived methane, methanol and diesel.        250
  • Figure 80. CO2 feedstock for the production of e-methanol.         257
  • Figure 81. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.             261
  • Figure 82. SWOT analysis: CO2 utilization in fuels.               263
  • Figure 83. Audi synthetic fuels.          264
  • Figure 84. Bio-oil upgrading/fractionation techniques.      272
  • Figure 85. SWOT analysis for bio-oils.           274
  • Figure 86. ANDRITZ Lignin Recovery process.          286
  • Figure 87. ChemCyclingTM prototypes.       293
  • Figure 88. ChemCycling circle by BASF.       293
  • Figure 89. FBPO process        304
  • Figure 90. Direct Air Capture Process.          308
  • Figure 91. CRI process.           310
  • Figure 92. Cassandra Oil  process.  313
  • Figure 93. Colyser process.  321
  • Figure 94. ECFORM electrolysis reactor schematic.            326
  • Figure 95. Dioxycle modular electrolyzer.    327
  • Figure 96. Domsjö process.  328
  • Figure 97. FuelPositive system.         339
  • Figure 98. INERATEC unit.     356
  • Figure 99. Infinitree swing method. 357
  • Figure 100. Audi/Krajete unit.              363
  • Figure 101. Enfinity cellulosic ethanol technology process.           391
  • Figure 102: Plantrose process.           399
  • Figure 103. Sunfire process for Blue Crude production.    415
  • Figure 104. Takavator.               418
  • Figure 105. O12 Reactor.        421
  • Figure 106. Sunglasses with lenses made from CO2-derived materials.               421
  • Figure 107. CO2 made car part.        422
  • Figure 108. The Velocys process.     425
  • Figure 109. Goldilocks process and applications. 427
  • Figure 110. The Proesa® Process.     428

 

 

The Global Market for Biofuels and E-Fuels 2025-2035
The Global Market for Biofuels and E-Fuels 2025-2035
PDF download/by email.

The Global Market for Biofuels and E-Fuels 2025-2035
The Global Market for Biofuels and E-Fuels 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.