The Global Market for Energetic Materials 2024-2035

0

  • Published: May 2024
  • Pages: 180
  • Tables: 21
  • Figures: 7
 
The Global Market for Energetic Materials 2024-2035 provides an in-depth analysis of the evolving energetic materials industry. Energetic materials, classified as high energy material, explosives, propellants, and pyrotechnic, are compounds capable of rapidly releasing large amounts of energy through controlled chemical reactions.
This comprehensive report covers the key types of energetic materials including RDX, HMX, CL-20, TNT, PETN, NTO, TATB, FOX-7, ADN, ANPz, HNIW, and ONC. EMs find a wide range of applications both in civil and military sectors. The report examines their classification, manufacturing precursors, and details each major type – describing advantages, disadvantages, production methods, applications and demand factors. A thorough markets and applications analysis is provided, covering military/defense (warheads, ammunition, boosters, detonators, torpedoes, demolition), aerospace (rocket propulsion, gas generators, explosive bolts, airbags), mining, construction/demolition, oil/gas (perforating, well stimulation, exploration), and pyrotechnics (fireworks, flares, tracers). Regulations across the US, Europe, China, Japan, South Korea, Australia, India and Singapore are examined to provide compliance insights. Pricing analysis reveals current market prices for common energetic materials. Supply chain breakdowns detail energetic materials sourcing, manufacturing, exporting and domestic distribution.

Technological advancements are explored including nanomaterials, green energetics, advanced formulations, AI/modeling, additive manufacturing, safety/sensitivity studies, bioengineering approaches, green/insensitive materials, and propulsion system innovations. Customer segmentation analyzes energetic materials usage across military, aerospace, mining, construction, oil/gas, and pyrotechnic sectors. Comprehensive geographic market intelligence covers the US, China, India, Asia-Pacific, Russia, Middle East, Europe and Latin America.

Forecasts are provided for the total addressable market size by application through 2035. Historical data from 2020 quantifies the overall market size (metric tons and $ millions) for key energetic material types like RDX, HMX, CL-20, PETN and others. Projections to 2035 are broken down by type, revenue source and world region.

Risks, opportunities and future outlook considerations round out this definitive energetic materials market report.  The competitive landscape is mapped with profiles of leading companies. Companies profiled include BAE Systems, Chemring Nobel, Hanwha Corporation, Island Pyrochemical Industries (IPI), LIG Nex1, Nammo AS, Nitro-Chem SA, Northrop Grumman, Poongsan Corporation, Rheinmetall Defence, Saudi Chemical and main Russian, Chinese and India producers. 

1             EXECUTIVE SUMMARY 

  • 1.1         Overview of the global energetic materials market       11
  • 1.2         Key market trends          12
  • 1.3         Growth drivers 13
  • 1.4         Market Challenges        16
  • 1.5         Biobased energetic materials 18

 

2             INTRODUCTION             

  • 2.1         Definition and classification of energetic materials     19
  • 2.2         Precursors         21
  • 2.3         Types of energetic materials    23
    • 2.3.1     RDX (Research Department Explosive)               24
      • 2.3.1.1 Description and Manufacture  24
      • 2.3.1.2 Advantages       25
      • 2.3.1.3 Disadvantages 25
      • 2.3.1.4 Applications and Market Demand         25
    • 2.3.2     HMX (High Melting Explosive)  27
      • 2.3.2.1 Description and Manufacture  27
      • 2.3.2.2 Advantages       27
      • 2.3.2.3 Disadvantages 28
      • 2.3.2.4 Applications and Market Demand         28
    • 2.3.3     CL-20 (Hexanitrohexaazaisowurtzitane)            30
      • 2.3.3.1 Description and Manufacture  30
      • 2.3.3.2 Advantages       31
      • 2.3.3.3 Disadvantages 32
      • 2.3.3.4 Applications and Market Demand         33
    • 2.3.4     TNT (Trinitrotoluene)     33
      • 2.3.4.1 Description and Manufacture  34
      • 2.3.4.2 Advantages       34
      • 2.3.4.3 Disadvantages 35
      • 2.3.4.4 Applications and Market Demand         36
    • 2.3.5     PETN (Pentaerythritol tetranitrate)        36
      • 2.3.5.1 Description and Manufacture  36
      • 2.3.5.2 Advantages       37
      • 2.3.5.3 Disadvantages 38
      • 2.3.5.4 Applications and Market Demand         39
    • 2.3.6     NTO (3-Nitro-1,2,4-triazol-5-one)          40
      • 2.3.6.1 Description and Manufacture  40
      • 2.3.6.2 Advantages       40
      • 2.3.6.3 Disadvantages 41
      • 2.3.6.4 Applications and Market Demand         42
    • 2.3.7     TATB (Triaminotrinitrobenzene)              43
      • 2.3.7.1 Description and Manufacture  43
      • 2.3.7.2 Advantages       44
      • 2.3.7.3 Disadvantages 45
      • 2.3.7.4 Applications and Market Demand         46
    • 2.3.8     FOX-7 (1,1-Diamino-2,2-dinitroethene)              47
      • 2.3.8.1 Description and Manufacture  47
      • 2.3.8.2 Advantages       48
      • 2.3.8.3 Disadvantages 48
      • 2.3.8.4 Applications and Market Demand         49
    • 2.3.9     ADN (Ammonium dinitramide) 50
      • 2.3.9.1 Description and Manufacture  50
      • 2.3.9.2 Advantages       51
      • 2.3.9.3 Disadvantages 52
      • 2.3.9.4 Applications and Market Demand         53
    • 2.3.10   ANPz (Aminonitropiperazine)   53
      • 2.3.10.1               Description and Manufacture  54
      • 2.3.10.2               Advantages       55
      • 2.3.10.3               Disadvantages 56
      • 2.3.10.4               Applications and Market Demand         57
    • 2.3.11   HNIW (Hexanitrohexaazaisowurtzitane)            57
      • 2.3.11.1               Description and Manufacture  57
      • 2.3.11.2               Advantages       59
      • 2.3.11.3               Disadvantages 59
      • 2.3.11.4               Applications and Market Demand         60
    • 2.3.12   ONC (Octanitrocubane)             61
      • 2.3.12.1               Description and Manufacture  61
      • 2.3.12.2               Advantages       61
      • 2.3.12.3               Disadvantages 62
      • 2.3.12.4               Applications and Market Demand         63
  • 2.4         Manufacturing processes and technologies     64

 

3             MARKETS AND APPLICATIONS 

  • 3.1         Military and defense     66
    • 3.1.1     Overview            66
    • 3.1.2     Warheads          66
    • 3.1.3     Ammunition     67
    • 3.1.4     Boosters             67
    • 3.1.5     Detonators and Initiators           67
    • 3.1.6     Blasting Caps and Primers        67
    • 3.1.7     Torpedoes and Mines   68
    • 3.1.8     Military Demolition       68
    • 3.1.9     Energetic Composites 68
    • 3.1.10   Unmanned Combat Vehicles and Smaller Weapon Systems   68
    • 3.1.11   Drones 68
    • 3.1.12   Application by energetic material type 69
  • 3.2         Aerospace and space exploration         69
    • 3.2.1     Overview            69
    • 3.2.2     Rocket Propulsion         70
    • 3.2.3     Gas Generators and Pyrotechnic Devices         70
    • 3.2.4     Explosive Bolts and Separation Mechanisms  70
    • 3.2.5     Airbag Deployment Systems    70
    • 3.2.6     Spacecraft Thrusters   70
  • 3.3         Mining and quarrying    71
    • 3.3.1     Overview            71
    • 3.3.2     Quarrying           71
    • 3.3.3     Metal Mining     71
    • 3.3.4     Coal Mining       72
    • 3.3.5     Non-Metal Mining          72
    • 3.3.6     Application by energetic material type 72
  • 3.4         Construction and demolition   73
    • 3.4.1     Overview            73
    • 3.4.2     Building Demolition      73
    • 3.4.3     Concrete and Rock Breaking    73
    • 3.4.4     Underwater Demolition              73
    • 3.4.5     Explosive Cutting           73
    • 3.4.6     Blasting Capsules          73
    • 3.4.7     Application by energetic material type 73
  • 3.5         Oil and gas         74
    • 3.5.1     Overview            74
    • 3.5.2     Oil well perforating charges      75
    • 3.5.3     Oil and Gas Well Stimulation   76
    • 3.5.4     Geophysical Exploration            76
    • 3.5.5     Application by energetic material type 76
  • 3.6         Pyrotechnics    77
    • 3.6.1     Overview            77
    • 3.6.2     Fireworks           77
    • 3.6.3     Signal Flares     77
    • 3.6.4     Explosive Tracers           77
    • 3.6.5     Special Effects 77
    • 3.6.6     Application by energetic material type 78
  • 3.7         Other applications        78
    • 3.7.1     Shockwave Generators              78
    • 3.7.2     Additive Manufacturing              78
    • 3.7.3     Medical Research          79

 

4             MARKET ANALYSIS       

  • 4.1         Regulations       79
    • 4.1.1     United States   80
    • 4.1.2     Europe 81
    • 4.1.3     Asia-Pacific      83
      • 4.1.3.1 China   83
      • 4.1.3.2 Japan    84
      • 4.1.3.3 South Korea      84
      • 4.1.3.4 Australia             84
      • 4.1.3.5 India     85
      • 4.1.3.6 Singapore          85
  • 4.2         Price and Cost Analysis              86
    • 4.2.1     Market prices   86
  • 4.3         Supply Chain and Manufacturing           87
    • 4.3.1     Supply chain for energetic materials   87
    • 4.3.2     Export and intra-country supply chains               89
  • 4.4         Competitive Landscape             91
    • 4.4.1     Market players 91
      • 4.4.1.1 North America 93
      • 4.4.1.2 China   93
      • 4.4.1.3 Rest of Asia-Pacific      94
      • 4.4.1.4 Europe 95
      • 4.4.1.5 Rest of the World            96
  • 4.5         Technological Advancements 97
    • 4.5.1     Nanomaterials 98
    • 4.5.2     Green Energetics           100
    • 4.5.3     Advanced Formulations             101
    • 4.5.4     Safety and Sensitivity Studies 102
    • 4.5.5     Advanced Synthesis Techniques            103
    • 4.5.6     Biological and Bioengineering Approaches       105
    • 4.5.7     Additive Manufacturing              105
    • 4.5.8     Advancements in Theoretical Modeling, Artificial Intelligence (AI), and Machine Learning       107
    • 4.5.9     Green and Insensitive Energetic Materials        108
    • 4.5.10   Advanced Propulsion Systems 109
  • 4.6         Customer Segmentation            111
  • 4.7         Geographical Markets 114
    • 4.7.1     United States   114
    • 4.7.2     China   115
    • 4.7.3     India     116
    • 4.7.4     Rest of Asia-Pacific      117
    • 4.7.5     Australia             118
    • 4.7.6     Russia  119
    • 4.7.7     Middle East       120
    • 4.7.8     Europe 121
    • 4.7.9     Latin America  122
  • 4.8         Addressable Market Size           124
    • 4.8.1     Risks and Opportunities             126
  • 4.9         Market Size and Growth              128
    • 4.9.1     Tons      129
    • 4.9.2     Revenues           130
    • 4.9.3     By region (tons)                131
  • 4.10       Future Outlook 132

 

5             COMPANY PROFILES  (38 company profiles)

 

6             RESEARCH METHODOLOGY   175

 

7             REFERENCES   176

 

List of Tables

  • Table 1. Market trends in energetic materials  12
  • Table 2. Energetic materials market growth drivers.     13
  • Table 3. Market challenges in energetic materials.       16
  • Table 4. Manufacturing processes and technologies for energetic materials-comparative analysis.  65
  • Table 5. Application by energetic material type in military and defense.            69
  • Table 6. Application by energetic material type in mining and quarrying.           72
  • Table 7. Application by energetic material type in construction and demolition.           74
  • Table 8. Application by energetic material type in oil and gas. 76
  • Table 9. Application by energetic material type in pyrotechnics.           78
  • Table 10. Market price for common energetic materials ($/lb).               86
  • Table 11. Market players in energetic materials in North America.       93
  • Table 12. Market players in energetic materials in China.          94
  • Table 13. Market players in energetic materials in Rest of Asia-Pacific.             94
  • Table 14. Market players in energetic materials in Europe.        95
  • Table 15. Market players in energetic materials in Rest of the World.   96
  • Table 16. Comparative analysis of energetic materials by primary end user markets. 112
  • Table 17. Addressable market sizes for energetic materials by application (tonnes).  124
  • Table 18. Global market for energetic materials, by type, 2020-2035 (metric tons).     129
  • Table 19. Global market for energetic materials, by type, 2020-2035 (millions USD).  130
  • Table 20. Global market for energetic materials, by region, 2020-2035 (metric tons). 131
  • Table 21. Future outlook by energetic material type.   132

 

List of Figures

  • Figure 1. Types of energetic materials. 24
  • Figure 2. Supply chain for energetic materials.               88
  • Figure 3. Typical export supply chain for energetic materials. 90
  • Figure 4. Typical intra-country supply chain for energetic materials.   91
  • Figure 5. Global market for energetic materials, by type, 2020-2035 (metric tons).      130
  • Figure 6. Global market for energetic materials, by type, 2020-2035 (millions USD).   131
  • Figure 7. Global market for energetic materials, by region, 2020-2035 (metric tons).  132

 

 

The Global Market for Energetic Materials 2024-2035
The Global Market for Energetic Materials 2024-2035
PDF download.

The Global Market for Energetic Materials 2024-2035
The Global Market for Energetic Materials 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.