The Global Market for Graphene in Batteries and Supercapacitors

0

cover

A more recent version of this publication is available

With global energy demands ever increasing, allied to efforts to reduce the use of fossil fuel and eliminate air pollutions, it is now essential to provide efficient, cost-effective, and environmental friendly energy storage devices. The growing market for smart grit networks, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is also driving the market for improving the energy density of rechargeable batteries.

Rechargeable battery technologies (such as Li-ion, Li-S, Na-ion, Li-O2 batteries) and supercapacitors are among the most promising power storage and supply systems in terms of their wide spread applicability, and tremendous potential owing to their high energy and power densities. LIBs are currently the dominant mobile power sources for portable electronic devices used in cell phones and laptops.

Although great advances have been made, each type of battery still suffers from problems that seriously hinder the practical applications for example in commercial EVs and PHEVs. The performance of these devices is inherently tied to the properties of materials used to build them.

With renewable energy sources at peak interest in the scientific research community, technologies for storing high amounts of electric charge and energy are much sought after.  Electric vehicles, and enabling lithium-battery (LIB) technology, will become a progressively larger market-with estimates of CAGR of over 20% through to 2025.

Due to intrinsic properties such as high surface area and high conductivity, graphene and 2D materials nanocomposite hybrids are regarded as excellent candidates to improve the performance of electrode materials in energy storage/conversion devices (e.g., Li ion batteries, supercapacitors, fuel cells, and solar cells).

Graphene has unique properties for application in batteries and supercapacitors, including high specific surface area (2630 m2/g), good chemical stability and excellent electrical conductivity. These properties make graphene to be an excellent candidate as a catalyst support for energy conversion and storage applications. It is the most widely studied advanced material for energy storage. Graphene nanoplatelets can increase the effectiveness of lithium-ion batteries when used to formulate electrodes, yielding vastly shorter recharge times.

Applications under commercial development include ultra-small capacitors, flexible and stretchable energy-storage devices, transparent batteries, and high- capacity and fast-charging devices.

A number of companies are developing energy storage applications for graphene, where it could potentially replace the graphite electrodes found in batteries, supercapacitors and fuel cells. Most activity at present is utilizing graphene as a conductive additive for lithium-ion batteries (LIB) and supercapacitors.

Published November 2018 | 194 pages | Table of contents

Report contents include:

  • Current graphene battery and supercapacitor products.
  • Stage of commercialization for graphene applications, from basic research to market entry.
  • Market drivers, trends and challenges, by battery and supercapacitor markets.
  • In-depth market assessment of opportunities for graphene in batteries and supercapacitors including addressable market revenues, most likely applications and market challenges.
  • Estimates for demand for graphene in batteries and supercapacitors (tons) to 2030.
  • In-depth company profiles, including products and commercial activities.
  • Detailed forecasts for key growth areas and opportunities.
  • >35 company profiles.

 

The Global Market for Graphene in Batteries and Supercapacitors
The Global Market for Graphene in Batteries and Supercapacitors
PDF download.
The Global Market for Graphene in Batteries and Supercapacitors
The Global Market for Graphene in Batteries and Supercapacitors
Print Edition.
The Global Market for Graphene in Batteries and Supercapacitors
The Global Market for Graphene in Batteries and Supercapacitors
PDF and Print Edition.

TABLE OF CONTENTS

1    RESEARCH METHODOLOGY………………………………………………… 20

  • 1.1     Market opportunity analysis……………………………………………………………………………………………………. 20
  • 1.2     Market challenges rating system……………………………………………………………………………………………… 22

2    EXECUTIVE SUMMARY…………………………………………………………. 24

  • 2.1     Two-dimensional (2D) materials………………………………………………………………………………………………. 24
  • 2.2     Graphene…………………………………………………………………………………………………………………………… 24
    • 2.2.1       The market in 2016………………………………………………………………………………………………………. 25
    • 2.2.2       The market in 2017………………………………………………………………………………………………………. 25
    • 2.2.3       The market in 2018………………………………………………………………………………………………………. 25
    • 2.2.4       Production………………………………………………………………………………………………………………….. 26
    • 2.2.5       Products……………………………………………………………………………………………………………………. 27
    • 2.2.6       Graphene investments 2017-2018…………………………………………………………………………………… 29
  • 2.3     Market outlook for 2018…………………………………………………………………………………………………………. 31
    • 2.3.1       Global funding and initiatives………………………………………………………………………………………….. 36
    • 2.3.2       Products and applications……………………………………………………………………………………………… 37
    • 2.3.3       Production………………………………………………………………………………………………………………….. 38
    • 2.3.4       Market drivers and trends………………………………………………………………………………………………. 39
    • 2.3.5       Market and technical challenges……………………………………………………………………………………… 46
  • 2.4     REGIONAL DEMAND…………………………………………………………………………………………………………… 48
    • 2.4.1       Asia-Pacific………………………………………………………………………………………………………………… 48
    • 2.4.1.1    Australia………………………………………………………………………………………………………………… 53
    • 2.4.2       North America…………………………………………………………………………………………………………….. 54
    • 2.4.3       Europe………………………………………………………………………………………………………………………. 56

3    PROPERTIES OF NANOMATERIALS………………………………………. 58

  • 3.1     Categorization…………………………………………………………………………………………………………………….. 58

4    OVERVIEW OF GRAPHENE…………………………………………………… 60

  • 4.1     History……………………………………………………………………………………………………………………………….. 60
  • 4.2     Forms of graphene……………………………………………………………………………………………………………….. 61
  • 4.3     Properties…………………………………………………………………………………………………………………………… 62
  • 4.4     3D Graphene………………………………………………………………………………………………………………………. 63
  • 4.5     Graphene Quantum Dots……………………………………………………………………………………………………….. 63

5    CARBON NANOTUBES VERSUS GRAPHENE…………………………. 68

  • 5.1     Comparative properties…………………………………………………………………………………………………………. 68
  • 5.2     Cost and production……………………………………………………………………………………………………………… 69
  • 5.3     Carbon nanotube-graphene hybrids…………………………………………………………………………………………. 70
  • 5.4     Competitive analysis of carbon nanotubes and graphene………………………………………………………………. 70

6    OTHER 2-D MATERIALS………………………………………………………… 72

  • 6.1     Beyond moore’s law……………………………………………………………………………………………………………… 73
  • 6.2     Batteries…………………………………………………………………………………………………………………………….. 74
  • 6.3     PHOSPHORENE…………………………………………………………………………………………………………………. 74
    • 6.3.1       Properties………………………………………………………………………………………………………………….. 74
    • 6.3.1.1    Fabrication methods…………………………………………………………………………………………………. 76
    • 6.3.1.2    Challenges for the use of phosphorene in devices…………………………………………………………… 76
    • 6.3.2       Applications………………………………………………………………………………………………………………… 76
  • 6.4     GRAPHITIC CARBON NITRIDE (g-C3N4)…………………………………………………………………………………. 79
    • 6.4.1       Properties………………………………………………………………………………………………………………….. 79
    • 6.4.2       Synthesis…………………………………………………………………………………………………………………… 80
    • 6.4.3       C2N…………………………………………………………………………………………………………………………… 80
    • 6.4.4       Applications………………………………………………………………………………………………………………… 81
  • 6.5     GERMANENE…………………………………………………………………………………………………………………….. 82
    • 6.5.1       Properties………………………………………………………………………………………………………………….. 82
    • 6.5.2       Applications………………………………………………………………………………………………………………… 83
  • 6.6     GRAPHDIYNE…………………………………………………………………………………………………………………….. 84
    • 6.6.1       Properties………………………………………………………………………………………………………………….. 84
    • 6.6.2       Applications………………………………………………………………………………………………………………… 84
  • 6.7     GRAPHANE……………………………………………………………………………………………………………………….. 86
    • 6.7.1       Properties………………………………………………………………………………………………………………….. 87
    • 6.7.2       Applications………………………………………………………………………………………………………………… 87
  • 6.8     HEXAGONAL BORON-NITRIDE……………………………………………………………………………………………… 88
    • 6.8.1       Properties………………………………………………………………………………………………………………….. 89
    • 6.8.2       Applications………………………………………………………………………………………………………………… 89
  • 6.9     MOLYBDENUM DISULFIDE (MoS2)………………………………………………………………………………………… 91
    • 6.9.1       Properties………………………………………………………………………………………………………………….. 91
    • 6.9.2       Applications………………………………………………………………………………………………………………… 92
  • 6.10        RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)………………………………………………………. 94
    • 6.10.1     Properties………………………………………………………………………………………………………………….. 95
    • 6.10.2     Applications………………………………………………………………………………………………………………… 95
  • 6.11        SILICENE………………………………………………………………………………………………………………………. 96
    • 6.11.1     Properties………………………………………………………………………………………………………………….. 96
    • 6.11.2     Applications………………………………………………………………………………………………………………… 97
  • 6.12        STANENE/TINENE………………………………………………………………………………………………………….. 98
    • 6.12.1     Properties………………………………………………………………………………………………………………….. 99
    • 6.12.2     Applications………………………………………………………………………………………………………………… 99
  • 6.13        TUNGSTEN DISELENIDE……………………………………………………………………………………………….. 100
    • 6.13.1     Properties…………………………………………………………………………………………………………………. 101
    • 6.13.2     Applications………………………………………………………………………………………………………………. 101
  • 6.14        ANTIMONENE………………………………………………………………………………………………………………. 101
    • 6.14.1     Properties…………………………………………………………………………………………………………………. 101
    • 6.14.2     Applications………………………………………………………………………………………………………………. 102
  • 6.15        DIAMENE…………………………………………………………………………………………………………………….. 102
    • 6.15.1     Properties…………………………………………………………………………………………………………………. 102
    • 6.15.2     Applications………………………………………………………………………………………………………………. 102
  • 6.16        INDIUM SELENIDE………………………………………………………………………………………………………… 102
    • 6.16.1     Properties…………………………………………………………………………………………………………………. 102
    • 6.16.2     Applications………………………………………………………………………………………………………………. 103
  • 6.17        COMPARATIVE ANALYSIS OF GRAPHENE AND OTHER 2D MATERIALS………………………………. 103

7    GRAPHENE SYNTHESIS……………………………………………………… 105

 

8    GRAPHENE BATTERY AND SUPERCAPACITOR INDUSTRY DEVELOPMENTS 2013-2018-INVESTMENTS, PRODUCTS AND PRODUCTION…………………………………………………………………………. 125

9    GRAPHENE MARKET ANALYSIS…………………………………………. 132

  • 9.1     Graphene production volumes 2010-2030………………………………………………………………………………… 132
  • 9.2     Commercial production capacities………………………………………………………………………………………….. 133
    • 9.2.1       Graphene oxide…………………………………………………………………………………………………………. 134
    • 9.2.2       Graphene nanoplatelets………………………………………………………………………………………………. 135
    • 9.2.3       CVD graphene film……………………………………………………………………………………………………… 137
    • 9.2.4       Planned graphene capacities 2018 onwards…………………………………………………………………….. 138
  • 9.3     Graphene pricing………………………………………………………………………………………………………………… 138
    • 9.3.1       Pristine Graphene Flakes pricing……………………………………………………………………………………. 140
    • 9.3.2       Few-Layer Graphene pricing…………………………………………………………………………………………. 140
    • 9.3.3       Graphene Nanoplatelets pricing…………………………………………………………………………………….. 141
    • 9.3.4       Reduced Graphene Oxide pricing………………………………………………………………………………….. 141
    • 9.3.5       Graphene Quantum Dots pricing……………………………………………………………………………………. 142
    • 9.3.6       Graphene Oxide Nanosheets pricing………………………………………………………………………………. 143
    • 9.3.7       Multilayer Graphene (MLG) pricing…………………………………………………………………………………. 143
    • 9.3.8       Mass production of lower grade graphene materials…………………………………………………………… 144
    • 9.3.9       High grade graphene difficult to mass produce………………………………………………………………….. 144
    • 9.3.10     Bulk supply……………………………………………………………………………………………………………….. 144
    • 9.3.11     Commoditisation………………………………………………………………………………………………………… 145

10 GRAPHENE BATTERY AND SUPERCAPACITOR MARKET……. 146

  • 10.1        BATTERIES………………………………………………………………………………………………………………….. 147
  • 10.1.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 147
  • 10.1.2     PROPERTIES AND APPLICATIONS……………………………………………………………………………… 149
    • 10.1.2.1       Lithium-ion batteries (LIB)……………………………………………………………………………………. 149
    • 10.1.2.2       Lithium-air batteries……………………………………………………………………………………………. 150
    • 10.1.2.3       Lithium–sulfur batteries (Li–S)………………………………………………………………………………. 150
    • 10.1.2.4       Sodium-ion batteries…………………………………………………………………………………………… 151
    • 10.1.2.5       Flexible and stretchable batteries………………………………………………………………………….. 151
  • 10.1.3     GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………………………… 154
  • 10.1.4     MARKET CHALLENGES……………………………………………………………………………………………… 158
  • 10.1.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 159
  • 10.2        SUPERCAPACITORS…………………………………………………………………………………………………….. 163
  • 10.2.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 163
  • 10.2.2     PROPERTIES AND APPLICATIONS……………………………………………………………………………… 163
    • 10.2.2.1       Flexible and stretchable supercapacitors…………………………………………………………………. 165
  • 10.2.3     GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………………………… 167
  • 10.2.4     MARKET CHALLENGES……………………………………………………………………………………………… 170
  • 10.2.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 170

 

 

11 GRAPHENE BATTERY AND SUPERCAPACITOR PRODUCT DEVELOPERS…………………………………………………………………………. 172

 

12 REFERENCES…………………………………………………………………….. 188

TABLES

  • Table 1: Demand for graphene (tons), 2010-2030……………………………………………………………………………………. 26
  • Table 2: Consumer products incorporating graphene………………………………………………………………………………… 28
  • Table 3: Graphene investments and financial agreements 2017-2018………………………………………………………….. 29
  • Table 4: Market opportunity assessment matrix for graphene applications…………………………………………………….. 33
  • Table 5: Graphene target markets-Applications and potential addressable market size…………………………………….. 37
  • Table 6: Main graphene producers by country and annual production capacities…………………………………………….. 38
  • Table 7: Graphene industrial collaborations, licence agreements and target markets……………………………………….. 41
  • Table 8: Categorization of nanomaterials……………………………………………………………………………………………….. 59
  • Table 9: Properties of graphene…………………………………………………………………………………………………………… 62
  • Table 10: Comparison of graphene QDs and semiconductor QDs……………………………………………………………….. 64
  • Table 11: Graphene quantum dot producers…………………………………………………………………………………………… 67
  • Table 12: Comparative properties of carbon materials………………………………………………………………………………. 69
  • Table 13: Comparative properties of graphene with nanoclays and carbon nanotubes……………………………………… 70
  • Table 14: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2030. 71
  • Table 15: 2D materials types……………………………………………………………………………………………………………….. 72
  • Table 16: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2……………………….. 75
  • Table 17: Market opportunity assessment for phosphorene applications……………………………………………………….. 79
  • Table 18: Market opportunity assessment for graphitic carbon nitride applications…………………………………………… 81
  • Table 19: Market opportunity assessment for germanene applications………………………………………………………….. 83
  • Table 20: Market opportunity assessment for graphdiyne applications………………………………………………………….. 86
  • Table 21: Market opportunity assessment for graphane applications……………………………………………………………. 88
  • Table 22: Market opportunity assessment for hexagonal boron nitride applications………………………………………….. 90
  • Table 23: Market opportunity assessment for molybdenum disulfide applications……………………………………………. 94
  • Table 24: Market opportunity assessment for Rhenium disulfide (ReS2) and diselenide (ReSe2) applications……….. 95
  • Table 25: Market opportunity assessment for silicene applications………………………………………………………………. 98
  • Table 26: Market opportunity assessment for stanine/tinene applications…………………………………………………….. 100
  • Table 27: Market opportunity assessment for tungsten diselenide applications……………………………………………… 101
  • Table 28: Comparative analysis of graphene and other 2-D nanomaterials…………………………………………………… 103
  • Table 29: Large area graphene films-Markets, applications and current global market……………………………………. 105
  • Table 30: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market…………. 105
  • Table 31: Main production methods for graphene…………………………………………………………………………………… 106
  • Table 32: Large area graphene films-Markets, applications and current global market……………………………………. 112
  • Table 33: Graphene synthesis methods, by company……………………………………………………………………………… 123
  • Table 34: Graphene battery and supercapacitor industry developments 2013-2018……………………………………….. 125
  • Table 35: Demand for graphene (tons), 2010-2030…………………………………………………………………………………. 132
  • Table 36: Graphene oxide production capacity in tons by country/year, 2010-2018………………………………………… 134
  • Table 37: Graphene oxide production capacity in tons by region, 2010-2018………………………………………………… 134
  • Table 38: Graphene nanoplatelets capacity in tons by country/year, 2010-2018……………………………………………. 135
  • Table 39: Graphene nanoplatelets capacity in tons by region, 2010-2018…………………………………………………….. 136
  • Table 40: CVD graphene film capacity in tons by country/year, 2010-2018/ 000s m2………………………………………. 138
  • Table 41: Planned graphene production capacities…………………………………………………………………………………. 138
  • Table 42: Types of graphene and prices………………………………………………………………………………………………. 139
  • Table 43: Pristine graphene flakes pricing by producer……………………………………………………………………………. 140
  • Table 44: Few-layer graphene pricing by producer…………………………………………………………………………………. 141
  • Table 45: Graphene nanoplatelets pricing by producer…………………………………………………………………………….. 141
  • Table 46: Reduced graphene oxide pricing, by producer………………………………………………………………………….. 142
  • Table 47: Graphene quantum dots pricing by producer……………………………………………………………………………. 142
  • Table 48: Graphene oxide nanosheets pricing by producer………………………………………………………………………. 143
  • Table 49: Multi-layer graphene pricing by producer…………………………………………………………………………………. 143
  • Table 50: Market drivers for use of graphene in batteries…………………………………………………………………………. 147
  • Table 51: Wearable energy and energy harvesting devices and stage of development……………………………………. 151
  • Table 52: Applications in flexible and stretchable batteries, by materials type and benefits thereof…………………….. 153
  • Table 53: Market size for graphene in batteries……………………………………………………………………………………… 155
  • Table 54: Potential addressable market for thin film, flexible and printed batteries…………………………………………. 156
  • Table 55: Market opportunity assessment for graphene in batteries……………………………………………………………. 156
  • Table 56: Demand for graphene in batteries (tons), 2018-2030…………………………………………………………………. 157
  • Table 57: Market challenges for graphene in batteries…………………………………………………………………………….. 158
  • Table 58: Market challenges rating for graphene in the batteries market……………………………………………………… 159
  • Table 59: Market drivers for use of graphene in supercapacitors……………………………………………………………….. 163
  • Table 60: Comparative properties of graphene supercapacitors and lithium-ion batteries………………………………… 164
  • Table 61: Applications and benefits of graphene in supercapacitors……………………………………………………………. 164
  • Table 62: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof…….. 166
  • Table 63: Market size for graphene in supercapacitors…………………………………………………………………………….. 167
  • Table 64: Market opportunity assessment for graphene in supercapacitors………………………………………………….. 168
  • Table 65: Demand for graphene in supercapacitors (tons), 2018-2030………………………………………………………… 169
  • Table 66: Market challenges rating for graphene in the supercapacitors market…………………………………………….. 170
  • Table 67: Graphene industrial collaborations, licence agreements and target markets……………………………………. 172

FIGURES

  • Figure 1: Demand for graphene, 2010-2030……………………………………………………………………………………………. 27
  • Figure 2: Vittoria bike tires incorporating graphene…………………………………………………………………………………… 28
  • Figure 3: Demand for graphene, by market, 2018. Figures based on market graphene producers sell to, including samples……………………………………………………………………………………………………………………………………. 32
  • Figure 4: Global government funding for graphene in millions USD to 2018…………………………………………………… 37
  • Figure 5: Global consumption of graphene 2017, by region………………………………………………………………………… 45
  • Figure 6: Demand for graphene in China, by market, 2017…………………………………………………………………………. 48
  • Figure 7: Demand for graphene in China, by market, 2030…………………………………………………………………………. 49
  • Figure 8: Demand for graphene in Asia-Pacific, by market, 2017…………………………………………………………………. 50
  • Figure 9: Demand for graphene in Asia-Pacific, by market, 2030…………………………………………………………………. 51
  • Figure 10: 15-inch single-layer graphene sheet being prepared in the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences……………………………………………………………………………………… 52
  • Figure 11: Demand for graphene in North America, by market, 2017……………………………………………………………. 55
  • Figure 12: Demand for graphene in North America, by market, 2030……………………………………………………………. 56
  • Figure 13: Demand for graphene in Europe, by market, 2017……………………………………………………………………… 57
  • Figure 14: Demand for graphene in Europe, by market, 2030……………………………………………………………………… 58
  • Figure 15: Graphene layer structure schematic……………………………………………………………………………………….. 60
  • Figure 16: Graphite and graphene………………………………………………………………………………………………………… 61
  • Figure 17: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. …………………………………………………… 62
  • Figure 18: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………………………………………………………………… 64
  • Figure 19: Green-fluorescing graphene quantum dots………………………………………………………………………………. 66
  • Figure 20: Graphene quantum dots………………………………………………………………………………………………………. 66
  • Figure 21: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite… 68
  • Figure 22: Schematic of 2-D materials…………………………………………………………………………………………………… 73
  • Figure 23: Black phosphorus structure…………………………………………………………………………………………………… 74
  • Figure 24: Black Phosphorus crystal……………………………………………………………………………………………………… 75
  • Figure 25: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation….. 77
  • Figure 26: Graphitic carbon nitride………………………………………………………………………………………………………… 80
  • Figure 27: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology……………………………………………………………………………. 80
  • Figure 28: Schematic of germanene……………………………………………………………………………………………………… 82
  • Figure 29: Graphdiyne structure…………………………………………………………………………………………………………… 84
  • Figure 30: Schematic of Graphane crystal……………………………………………………………………………………………… 87
  • Figure 31: Structure of hexagonal boron nitride……………………………………………………………………………………….. 88
  • Figure 32: BN nanosheet textiles application…………………………………………………………………………………………… 90
  • Figure 33: Structure of 2D molybdenum disulfide…………………………………………………………………………………….. 91
  • Figure 34: SEM image of MoS2……………………………………………………………………………………………………………. 92
  • Figure 35: Atomic force microscopy image of a representative MoS2 thin-film transistor…………………………………… 93
  • Figure 36: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge………………………………………………………………………………………………………………………… 93
  • Figure 37: Schematic of a monolayer of rhenium disulfide………………………………………………………………………….. 95
  • Figure 38: Silicene structure……………………………………………………………………………………………………………….. 96
  • Figure 39: Monolayer silicene on a silver (111) substrate…………………………………………………………………………… 96
  • Figure 40: Silicene transistor……………………………………………………………………………………………………………….. 97
  • Figure 41: Crystal structure for stanene…………………………………………………………………………………………………. 99
  • Figure 42: Atomic structure model for the 2D stanene on Bi2Te3(111)………………………………………………………….. 99
  • Figure 43: Schematic of tungsten diselenide…………………………………………………………………………………………. 100
  • Figure 44: Schematic of Indium Selenide (InSe)…………………………………………………………………………………….. 103
  • Figure 45: Fabrication methods of graphene…………………………………………………………………………………………. 107
  • Figure 46: Graphene synthesis methods………………………………………………………………………………………………. 108
  • Figure 47: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF……………………………………………………………………………. 109
  • Figure 48: Graphene nanoribbons grown on germanium………………………………………………………………………….. 111
  • Figure 49: Schematic illustration of the main graphene production techniques………………………………………………. 113
  • Figure 50: Graphene synthesis-CVD technique……………………………………………………………………………………… 114
  • Figure 51: (a) Graphene powder production line in The Sixth Element Materials Technology Co. Ltd. (b) Graphene film production line of Wuxi Graphene Films Co. Ltd………………………………………………………………………………. 115
  • Figure 52: Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG……………………….. 118
  • Figure 53: Roll-to-roll graphene production process………………………………………………………………………………… 119
  • Figure 54: Schematic of roll-to-roll manufacturing process………………………………………………………………………… 120
  • Figure 55: Microwave irradiation of graphite to produce single-layer graphene……………………………………………… 122
  • Figure 56: Demand for graphene, 2010-2030………………………………………………………………………………………… 133
  • Figure 57: Graphene oxide production capacity in tons by region, 2010-2018……………………………………………….. 135
  • Figure 58: Graphene nanoplatelets capacity in tons by region, 2010-2018…………………………………………………… 137
  • Figure 59: CVD Graphene on Cu Foil………………………………………………………………………………………………….. 137
  • Figure 60: The SkelStart Engine Start Module 2.0 based on the graphene-based SkelCap ultracapacitors………….. 147
  • Figure 61: Energy harvesting textile…………………………………………………………………………………………………….. 149
  • Figure 62: LG Chem Heaxagonal battery……………………………………………………………………………………………… 151
  • Figure 63: Printed 1.5V battery…………………………………………………………………………………………………………… 153
  • Figure 64: H600 concept car……………………………………………………………………………………………………………… 154
  • Figure 65: Anion concept car……………………………………………………………………………………………………………… 155
  • Figure 66: Potential addressable market for graphene in the thin film, flexible and printed batteries market…………. 157
  • Figure 67: Demand for graphene in batteries (tons), 2018-2030………………………………………………………………… 158
  • Figure 68: Skeleton Technologies ultracapacitor…………………………………………………………………………………….. 164
  • Figure 69: Zapgo supercapacitor phone charger…………………………………………………………………………………….. 165
  • Figure 70: Stretchable graphene supercapacitor…………………………………………………………………………………….. 166
  • Figure 71: Potential addressable market for graphene in supercapacitors……………………………………………………. 168
  • Figure 72: Demand for graphene in supercapacitors (tons), 2018-2030……………………………………………………….. 169