The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034

0

 

The electronics industry has witnessed massive growth over the past few decades, with electronic devices becoming an integral part of modern life. However, this growth has also led to significant environmental impacts, including high energy consumption, resource depletion, and electronic waste (e-waste). According to the UN, waste electronics is the fastest growing and most hazardous waste stream globally.  This has resulted in an increasing need to make electronics manufacturing more sustainable and environmentally friendly, leading to the emergence of "green electronics" as an approach to reducing the electronics industry's environmental footprint.

Development of sustainable printed circuit board (PCB) designs has grown recently as part of the push for green manufacturing. Traditional  PCB manufacturing relies on energy intensive and high-emission processes that involve copper, epoxy resin, glass fiber, and water that are harmful to the environment. Recycling techniques have low efficiency and include laborious processes.

New materials are being utilized that are easily recyclable, and biodegradable polymers and paper PCBs are used in PCB manufacturing. Environmentally friendly etchants for existing subtractive processes and additive manufacturing such as inkjet and laser printing is also increasingly utilized. By employing additive methods, energy consumption during manufacturing can be even five times less than with conventional methods.  Sustainable and printable substrate materials including different cellulose and wood-based materials, bioplastics, and biocomposites have been developed. 

The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034 provides a comprehensive analysis of the global green electronics manufacturing industry. The report covers industry trends, drivers, challenges, approaches, technologies, materials, processes, and leading companies across printed circuit boards (PCBs), integrated circuits (ICs), batteries, assembly, and the electronics supply chain. Market revenues and forecasts are provided for sustainable PCBs and ICs, segmented by substrate and process types, through 2034. 

The report profiles 40+ innovative companies offering greener materials, chemistries, equipment and manufacturing services enabling the transition to more circular, lower carbon electronics. Multiple tables summarize key manufacturers, processes, materials, and sustainability strategies for green electronics.

Analysis is provided on trends in renewables, additive processes, biobased and recycled materials, toxicity reduction, supply chain transparency, e-waste recovery, and life cycle optimization to minimize electronics' environmental footprint. The report helps electronics OEMs, PCBs, ICs, EMS companies and suppliers benchmark sustainability efforts and identify new opportunities.

Report contents include:

  • Overview of green electronics manufacturing and drivers for sustainability such as e-waste reduction, lower emissions, and resource efficiency.
  • Analysis of environmental impacts like carbon emissions, water usage, and waste.
  • Regulations and certifications promoting sustainable electronics.
  • Powering electronics through renewable batteries.
  • Use of bioplastics for injection molded parts.
  • Comparison of conventional vs sustainable manufacturing approaches.
  • Analysis of strategies including renewable energy, materials efficiency, sustainable chemistry, recycled materials, and supply chain management.
  • Sustainable PCB manufacturing including materials, substrates, patterning, component attachment.
  • Sustainable integrated circuits manufacturing.
  • End-of-life considerations for electronics.
  • Global PCB market size and forecast 2018-2034.
  • Sustainable PCB and IC revenue forecasts segmented by technology type.
  • Profiles of 40+ companies providing green materials, equipment, and manufacturing services. Companies profiled include DP Patterning, Elephantech, Infineon Technologies, Jiva Materials, Samsung, Syenta, and Tactotek. Additional information on bio-based battery, conductive ink, green & lead-free solder and halogen-free FR4 companies.

 

The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
PDF download.

The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
PDF and print edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

View full table of contents (pdf)

1              INTRODUCTION 

  • 1.1          Green electronics manufacturing              14
  • 1.2          Drivers for sustainable electronics            15
  • 1.3          Environmental Impacts of Electronics Manufacturing       16
    • 1.3.1      E-Waste Generation       16
    • 1.3.2      Carbon Emissions             17
    • 1.3.3      Resource Utilization        17
    • 1.3.4      Waste Minimization        18
    • 1.3.5      Supply Chain Impacts     19
  • 1.4          New opportunities from sustainable electronics 19
  • 1.5          Regulations        20
    • 1.5.1      Certifications     21
  • 1.6          Powering sustainable electronics (Bio-based batteries)   21
  • 1.7          Bioplastics in injection moulded electronics parts              22

 

2              GREEN ELECTRONICS MANUFACTURING 

  • 2.1          Conventional electronics manufacturing 24
  • 2.2          Benefits of Green Electronics manufacturing        24
  • 2.3          Challenges in adopting Green Electronics manufacturing 25
  • 2.4          Approaches        26
    • 2.4.1      Closed-Loop Manufacturing        26
    • 2.4.2      Digital Manufacturing    27
      • 2.4.2.1   Advanced robotics & automation              28
      • 2.4.2.2   AI & machine learning analytics  28
      • 2.4.2.3   Internet of Things (IoT)  28
      • 2.4.2.4   Additive manufacturing 28
      • 2.4.2.5   Virtual prototyping          29
      • 2.4.2.6   Blockchain-enabled supply chain traceability        29
    • 2.4.3      Renewable Energy Usage             29
    • 2.4.4      Energy Efficiency              31
    • 2.4.5      Materials Efficiency         31
    • 2.4.6      Sustainable Chemistry   32
    • 2.4.7      Recycled Materials          33
      • 2.4.7.1   Advanced chemical recycling       33
    • 2.4.8      Bio-Based Materials        36
  • 2.5          Greening the Supply Chain           39
    • 2.5.1      Key focus areas 40
    • 2.5.2      Sustainability activities from major electronics brands     43
    • 2.5.3      Key challenges  44
    • 2.5.4      Use of digital technologies           44
  • 2.6          SUSTAINABLE PRINTED CIRCUIT BOARD (PCB) MANUFACTURING 46
    • 2.6.1      Conventional PCB manufacturing              46
    • 2.6.2      Trends in PCBs  47
      • 2.6.2.1   High-Speed PCBs              47
      • 2.6.2.2   Flexible PCBs      48
      • 2.6.2.3   3D Printed PCBs                48
      • 2.6.2.4   Sustainable PCBs              49
    • 2.6.3      Reconciling sustainability with performance        50
    • 2.6.4      Sustainable supply chains             51
    • 2.6.5      Sustainability in PCB manufacturing         52
      • 2.6.5.1   Sustainable cleaning of PCBs       52
    • 2.6.6      Design of PCBs for sustainability 54
      • 2.6.6.1   Rigid      55
      • 2.6.6.2   Flexible 56
      • 2.6.6.3   Additive manufacturing 56
      • 2.6.6.4   In-mold elctronics (IME) 58
    • 2.6.7      Materials             58
      • 2.6.7.1   Metal cores        58
      • 2.6.7.2   Recycled laminates          59
      • 2.6.7.3   Conductive inks 59
      • 2.6.7.4   Green and lead-free solder          62
      • 2.6.7.5   Biodegradable substrates             62
        • 2.6.7.5.1               Bacterial Cellulose           63
        • 2.6.7.5.2               Mycelium            64
        • 2.6.7.5.3               Lignin    66
        • 2.6.7.5.4               Cellulose Nanofibers      68
        • 2.6.7.5.5               Soy Protein         71
        • 2.6.7.5.6               Algae     72
        • 2.6.7.5.7               PHAs     72
      • 2.6.7.6   Biobased inks     73
    • 2.6.8      Substrates          74
      • 2.6.8.1   Halogen-free FR4             74
        • 2.6.8.1.1               FR4 limitations   74
        • 2.6.8.1.2               FR4 alternatives                75
        • 2.6.8.1.3               Bio-Polyimide    76
      • 2.6.8.2   Metal-core PCBs               78
      • 2.6.8.3   Biobased PCBs   78
        • 2.6.8.3.1               Flexible (bio) polyimide PCBs      79
        • 2.6.8.3.2               Recent commercial activity          80
      • 2.6.8.4   Paper-based PCBs           81
      • 2.6.8.5   PCBs without solder mask            81
      • 2.6.8.6   Thinner dielectrics           81
      • 2.6.8.7   Recycled plastic substrates          82
      • 2.6.8.8   Flexible substrates          82
    • 2.6.9      Sustainable patterning and metallization in electronics manufacturing     82
      • 2.6.9.1   Introduction       82
      • 2.6.9.2   Issues with sustainability               83
      • 2.6.9.3   Regeneration and reuse of etching chemicals       83
      • 2.6.9.4   Transition from Wet to Dry phase patterning       84
      • 2.6.9.5   Print-and-plate 85
      • 2.6.9.6   Approaches        86
        • 2.6.9.6.1               Direct Printed Electronics             86
        • 2.6.9.6.2               Photonic Sintering           87
        • 2.6.9.6.3               Biometallization                88
        • 2.6.9.6.4               Plating Resist Alternatives            89
        • 2.6.9.6.5               Laser-Induced Forward Transfer 89
        • 2.6.9.6.6               Electrohydrodynamic Printing     92
        • 2.6.9.6.7               Electrically conductive adhesives (ECAs  92
        • 2.6.9.6.8               Green electroless plating              94
        • 2.6.9.6.9               Smart Masking  95
        • 2.6.9.6.10             Component Integration 95
        • 2.6.9.6.11             Bio-inspired material deposition 95
        • 2.6.9.6.12             Multi-material jetting     96
        • 2.6.9.6.13             Vacuumless deposition 97
        • 2.6.9.6.14             Upcycling waste streams              98
    • 2.6.10    Sustainable attachment and integration of components 98
      • 2.6.10.1                Conventional component attachment materials 98
      • 2.6.10.2                Materials             100
        • 2.6.10.2.1             Conductive adhesives    100
        • 2.6.10.2.2             Biodegradable adhesives              100
        • 2.6.10.2.3             Magnets              100
        • 2.6.10.2.4             Bio-based solders            101
        • 2.6.10.2.5             Bio-derived solders         101
        • 2.6.10.2.6             Recycled plastics               101
        • 2.6.10.2.7             Nano adhesives 101
        • 2.6.10.2.8             Shape memory polymers              102
        • 2.6.10.2.9             Photo-reversible polymers          103
        • 2.6.10.2.10          Conductive biopolymers               104
      • 2.6.10.3                Processes            105
        • 2.6.10.3.1             Traditional thermal processing methods 105
        • 2.6.10.3.2             Low temperature solder               106
        • 2.6.10.3.3             Reflow soldering              109
        • 2.6.10.3.4             Induction soldering         109
        • 2.6.10.3.5             UV curing             110
        • 2.6.10.3.6             Near-infrared (NIR) radiation curing         110
        • 2.6.10.3.7             Photonic sintering/curing             111
        • 2.6.10.3.8             Component embedding 111
        • 2.6.10.3.9             Hybrid integration           111
  • 2.7          SUSTAINABLE INTEGRATED CIRCUITS (IC)    113
    • 2.7.1      IC manufacturing             113
    • 2.7.2      Sustainable IC manufacturing     114
    • 2.7.3      Wafer production            114
      • 2.7.3.1   Silicon   115
      • 2.7.3.2   Gallium nitride ICs           115
      • 2.7.3.3   Flexible ICs          115
      • 2.7.3.4   Fully printed organic ICs 116
    • 2.7.4      Oxidation methods         117
      • 2.7.4.1   Sustainable oxidation     117
      • 2.7.4.2   Metal oxides      118
      • 2.7.4.3   Recycling             119
      • 2.7.4.4   Thin gate oxide layers    119
    • 2.7.5      Patterning and doping   120
      • 2.7.5.1   Processes            120
        • 2.7.5.1.1               Wet etching       120
        • 2.7.5.1.2               Dry plasma etching          120
        • 2.7.5.1.3               Lift-off patterning            121
        • 2.7.5.1.4               Surface doping  121
    • 2.7.6      Metallization      122
    • 2.7.6.1   Evaporation        122
      • 2.7.6.2   Plating  123
      • 2.7.6.3   Printing 123
        • 2.7.6.3.1               Printed metal gates for organic thin film transistors          123
      • 2.7.6.4   Physical vapour deposition (PVD)              124
  • 2.8          End of life            125
    • 2.8.1      Hazardous waste              125
    • 2.8.2      Emissions            126
    • 2.8.3      Water Usage      127
    • 2.8.4      Recycling             128
      • 2.8.4.1   Mechanical recycling      129
      • 2.8.4.2   Electro-Mechanical Separation   130
      • 2.8.4.3   Chemical Recycling          130
      • 2.8.4.4   Electrochemical Processes           131
      • 2.8.4.5   Thermal Recycling            131
    • 2.8.5      Green Certification          132

 

3              GLOBAL MARKET AND REVENUES 2018-2034       

  • 3.1          Global PCB manufacturing industry          133
    • 3.1.1      PCB revenues    133
  • 3.2          Sustainable PCBs              134
  • 3.3          Sustainable ICs  137

 

4              COMPANY PROFILES       139 (44 company profiles)

 

5              RESEARCH METHODOLOGY         191

  • 5.1          Objectives of This Report              191

 

6              REFERENCES       192

 

List of Tables

  • Table 1. Key factors driving adoption of green electronics.             15
  • Table 2. Key circular economy strategies for electronics. 18
  • Table 3. Regulations pertaining to green electronics.        20
  • Table 4. Companies developing bio-based batteries for application in sustainable electronics.       22
  • Table 5. Benefits of Green Electronics Manufacturing      24
  • Table 6. Challenges in adopting Green Electronics manufacturing.              26
  • Table 7. Major chipmakers' renewable energy road maps.             30
  • Table 8. Energy efficiency in sustainable electronics manufacturing.          31
  • Table 9. Composition of plastic waste streams.   34
  • Table 10. Comparison of mechanical and advanced chemical recycling.    35
  • Table 11. Example chemically recycled plastic products.  36
  • Table 12. Bio-based and non-toxic materials in sustainable electronics.    37
  • Table 13. Key focus areas for enabling greener and ethically responsible electronics supply chains.              40
  • Table 14. Sustainability programs and disclosure from major electronics brands. 43
  • Table 15. PCB manufacturing process.    46
  • Table 16. Challenges in PCB manufacturing.         47
  • Table 17. 3D PCB manufacturing.              49
  • Table 18.  Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors. 50
  • Table 19. Sustainable PCB supply chain.  51
  • Table 20. Key areas where the PCB industry can improve sustainability.   52
  • Table 21. Improving sustainability of PCB design.               54
  • Table 22. PCB design options for sustainability.   55
  • Table 23.  Sustainability benefits and challenges associated with 3D printing.        57
  • Table 24. Conductive ink producers.        61
  • Table 25.  Green and lead-free solder companies.             62
  • Table 26. Biodegradable substrates for PCBs.       62
  • Table 27. Overview of mycelium fibers-description, properties, drawbacks and applications.          64
  • Table 28. Application of lignin in composites.      66
  • Table 29. Properties of lignins and their applications.       67
  • Table 30. Properties of flexible electronics‐cellulose nanofiber film (nanopaper). 69
  • Table 31. Companies developing cellulose nanofibers for electronics.       70
  • Table 32. Commercially available PHAs.  73
  • Table 33. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).          74
  • Table 34. Halogen-free FR4 companies.  77
  • Table 35. Properties of biobased PCBs.   78
  • Table 36. Applications of flexible (bio) polyimide PCBs.    80
  • Table 37. Main patterning and metallization steps in PCB fabrication and sustainable options.       82
  • Table 38. Sustainability issues with conventional metallization processes.              83
  • Table 39. Benefits of print-and-plate.      85
  • Table 40. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.                89
  • Table 41. Applications for laser induced forward transfer               90
  • Table 42. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.       91
  • Table 43. Approaches for in-situ oxidation prevention.    91
  • Table 44. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing.          93
  • Table 45. Advantages of green electroless plating.             94
  • Table 46. Comparison of component attachment materials.          98
  • Table 47. Comparison between sustainable and conventional component attachment materials for printed circuit boards  99
  • Table 48. Comparison between the SMAs and SMPs.       102
  • Table 49. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.                104
  • Table 50. Comparison of curing and reflow processes used for attaching components in electronics assembly.       105
  • Table 51. Low temperature solder alloys.              106
  • Table 52. Thermally sensitive substrate materials.             107
  • Table 53. Limitations of existing IC production.   113
  • Table 54. Strategies for improving sustainability in integrated circuit (IC) manufacturing. 114
  • Table 55. Comparison of oxidation methods and level of sustainability.    117
  • Table 56. Stage of commercialization for oxides. 118
  • Table 57. Alternative doping techniques.               122
  • Table 58.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers.              129
  • Table 59. Chemical recycling methods for handling electronic waste.        130
  • Table 60.  Electrochemical processes for recycling metals from electronic waste  131
  • Table 61. Thermal recycling processes for electronic waste.          131
  • Table 62. Global PCB revenues 2018-2034 (billions USD), by substrate types.        133
  • Table 63. Global sustainable PCB revenues 2018-2034, by type (millions USD).     134
  • Table 64. Global sustainable ICs revenues 2018-2034, by type (millions USD).       137
  • Table 65. Oji Holdings CNF products.       173

 

List of Figures

  • Figure 1. Closed-loop manufacturing.      27
  • Figure 2. Sustainable supply chain for electronics.             40
  • Figure 3. Flexible PCB.    48
  • Figure 4. Vapor degreasing.         53
  • Figure 5. Multi-layered PCB.        55
  • Figure 6. 3D printed PCB.              57
  • Figure 7. In-mold electronics prototype devices and products.     58
  • Figure 8. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components.  60
  • Figure 9. Typical structure of mycelium-based foam.        65
  • Figure 10. Flexible electronic substrate made from CNF. 70
  • Figure 11. CNF composite.           70
  • Figure 12. Oji CNF transparent sheets.    71
  • Figure 13. Electronic components using cellulose nanofibers as insulating materials.          71
  • Figure 14. BLOOM masterbatch from Algix.           72
  • Figure 15. Dell's Concept Luna laptop.     80
  • Figure 16.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics.              86
  • Figure 17. 3D printed circuit boards from Nano Dimension.           87
  • Figure 18. Photonic sintering.     88
  • Figure 19. Laser-induced forward transfer (LIFT). 90
  • Figure 20. Material jetting 3d printing.    96
  • Figure 21. Material jetting 3d printing product.   97
  • Figure 22. The molecular mechanism of the shape memory effect under different stimuli.              103
  • Figure 23. Supercooled Soldering™ Technology. 108
  • Figure 24. Reflow soldering schematic.   109
  • Figure 25. Schematic diagram of induction heating reflow.            110
  • Figure 26. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.        117
  • Figure 27. Types of PCBs after dismantling waste computers and monitors.            128
  • Figure 28. Global PCB revenues 2018-2034 (billions USD), by substrate types.       134
  • Figure 29. Global sustainable PCB revenues 2018-2034, by type (millions USD).    136
  • Figure 30. Global sustainable ICs revenues 2018-2034, by type (millions USD).      138
  • Figure 31. Piezotech® FC.             144
  • Figure 32. PowerCoat® paper.    145
  • Figure 33. BeFC® biofuel cell and digital platform.              147
  • Figure 34. DPP-360 machine.      150
  • Figure 35. P-Flex® Flexible Circuit.             153
  • Figure 36. Fairphone 4.  155
  • Figure 37. In2tec’s fully recyclable flexible circuit board assembly.             161
  • Figure 38. C.L.A.D. system.          163
  • Figure 39. Soluboard immersed in water.              165
  • Figure 40. Infineon PCB before and after immersion.        166
  • Figure 41. Nano OPS Nanoscale wafer printing system.   169
  • Figure 42. Stora Enso lignin battery materials.     181
  • Figure 43. 3D printed electronics.             183
  • Figure 44. Tactotek IME device. 184
  • Figure 45. TactoTek® IMSE® SiP - System In Package.        185
  • Figure 46. Verde Bio-based resins.           189

 

 

 

The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
PDF download.

The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
The Global Market for Green and Sustainable Electronics Manufacturing 2024-2034
PDF and print edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.