The Global Market for Non-Graphene 2D Materials

0

Published June 2021 | 125 pages, 11 tables, 39 figures | Table of contents

Due to its exceptional transport, mechanical and thermal properties, graphene has been at the forefront of nanomaterials research over the past few years. Its development has enabled researchers to explore other 2D layered materials, such as the transition metal dichalcogenides (TMD), a wide variety of oxides and nitrides and clays. Several types are now commercially available from advanced materials producers.

 2D materials covered in this report include:

  • transition metal dichalcogenides (TMD).
  • hexagonal boron nitride (h-BN).
  • MXenes.
  • borophene.
  • phosphorene.
  • graphitic carbon nitride.
  • germanene.
  • graphane.
  • graphdiyne.
  • stanene/tinene.
  • tungsten diselenide.
  • rhenium disulfide.
  • diamene.
  • silicene.
  • antimonene.
  • indium selenide.
  • layered double hydroxides. 

 

Report contents include:

  • Properties of 2D materials.
  • Applications of 2D materials.
  • Addressable markets for 2D materials.
  • Production and pricing of 2D materials. 
  • Profiles of 2D materials producers and suppliers.

1              INTRODUCTION 11

  • 1.1          What are 2D materials? 11
  • 1.2          Exceptional properties   12
  • 1.3          Comparative analysis of graphene and other 2D materials              12
  • 1.4          Commercial opportunities           13

 

2              TYPES OF 2D MATERIALS              17

  • 2.1.1      Layered van der Waals solids       17
  • 2.1.2      Layered ionic solids         17
  • 2.1.3      Surface-assisted elemental nanolayered solids   18

 

3              2D MATERIALS PRODUCTION METHODS 22

  • 3.1          Top-down exfoliation     22
  • 3.2          Bottom-up synthesis      22

 

4              HEXAGONAL BORON-NITRIDE (h-BN)      25

  • 4.1          Properties           26
  • 4.2          Applications and markets             26
    • 4.2.1      Electronics          26
    • 4.2.2      Fuel cells              27
    • 4.2.3      Adsorbents        27
    • 4.2.4      Photodetectors 28
    • 4.2.5      Textiles 28
    • 4.2.6      Biomedical          29
  • 4.3          Market opportunity for hexagonal boron-nitride 30

 

5              MXENES               32

  • 5.1          Properties           32
  • 5.2          Applications       33
    • 5.2.1      Catalysts              33
    • 5.2.2      Hydrogels            33
    • 5.2.3      Energy storage devices  34
      • 5.2.3.1   Electrodes for Li-ion batteries     34
      • 5.2.3.2   Na-ion batteries               35
      • 5.2.3.3   Supercapacitors 35
    • 5.2.4      Sensors 36
      • 5.2.4.1   Wearable sensors            36
      • 5.2.4.2   Stain sensors     37
      • 5.2.4.3   Pressure sensors              37
      • 5.2.4.4   Biosensors          38
      • 5.2.4.5   Gas sensors        38
    • 5.2.5      Adsorbents        39
    • 5.2.6      Membrane separation   40
  • 5.3          Market opportunity for MXenes 40

 

6              TRANSITION METAL DICHALCOGENIDES 42

  • 6.1          Properties           42
    • 6.1.1      Molybdenum disulphide (MoS2)               42
    • 6.1.2      Tungsten ditelluride (WTe2)        42
  • 6.2          Applications       43
    • 6.2.1      Electronics          43
  • 6.3          Properties           43
  • 6.4          Applications       44
    • 6.4.1      Electronics          44
    • 6.4.2      Photovoltaics     45
    • 6.4.3      Electrocatalysis 46
    • 6.4.4      Piezoelectrics    46
    • 6.4.5      Sensors 46
    • 6.4.6      Filtration              47
    • 6.4.7      Batteries and supercapacitors    47
    • 6.4.8      Fiber lasers         48
  • 6.5          Market opportunity for TMDs     48

 

7              BOROPHENE      49

  • 7.1          Properties           49
  • 7.2          Applications       50
    • 7.2.1      Energy storage  50
    • 7.2.2      Electronics          50
    • 7.2.3      Sensors 51
    • 7.2.4      Hydrogen storage            51
  • 7.3          Market opportunity for borophene          53

 

8              PHOSPHORENE 55

  • 8.1          Properties           55
    • 8.1.1      Fabrication methods      57
    • 8.1.2      Challenges for the use of phosphorene in devices              57
  • 8.2          Applications       58
    • 8.2.1      Electronics          58
    • 8.2.2      Field effect transistors   58
    • 8.2.3      Batteries              59
      • 8.2.3.1   Lithium-ion batteries (LIB)            59
      • 8.2.3.2   Sodium-ion batteries      59
      • 8.2.3.3   Lithium–sulfur batteries 59
    • 8.2.4      Supercapacitors 59
    • 8.2.5      Photodetectors 60
    • 8.2.6      Sensors 60
  • 8.3          Market opportunity for phosphorene     60

 

9              GRAPHITIC CARBON NITRIDE (g-C3N4)    62

  • 9.1          Properties           62
  • 9.2          Synthesis             62
  • 9.3          C2N        62
  • 9.4          Applications       63
    • 9.4.1      Electronics          63
    • 9.4.2      Filtration membranes    63
    • 9.4.3      Photocatalysts  64
    • 9.4.4      Batteries              64
    • 9.4.5      Sensors 65
  • 9.5          Market opportunity for graphitic carbon nitride  65

 

10           GERMANENE     67

  • 10.1        Properties           67
  • 10.2        Applications       68
    • 10.2.1    Electronics          68
    • 10.2.2    Batteries              74
  • 10.3        Market opportunity for germanene         74

 

11           GRAPHDIYNE     76

  • 11.1        Properties           76
  • 11.2        Applications       77
    • 11.2.1    Electronics          77
    • 11.2.2    Batteries              77
      • 11.2.2.1                Lithium-ion batteries (LIB)            77
      • 11.2.2.2                Sodium ion batteries      78
    • 11.2.3    Separation membranes 78
    • 11.2.4    Water filtration 79
    • 11.2.5    Photocatalysts  79
    • 11.2.6    Photovoltaics     79
  • 11.3        Market opportunity for graphdiyne          80

 

12           GRAPHANE         82

  • 12.1        Properties           82
  • 12.2        Applications       82
    • 12.2.1    Electronics          82
    • 12.2.2    Hydrogen storage            83
  • 12.3        Market opportunity for graphane             84

 

13           RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)     86

  • 13.1        Properties           86
  • 13.2        Applications       86
    • 13.2.1    Electronics          86
  • 13.3        Market opportunity for rhenium disulfide (ReS2) and diselenide (ReSe2) 87

 

14           SILICENE              88

  • 14.1        Properties           89
  • 14.2        Applications       90
    • 14.2.1    Electronics          90
    • 14.2.2    Photovoltaics     90
    • 14.2.3    Thermoelectrics               90
    • 14.2.4    Batteries              90
    • 14.2.5    Sensors 91
  • 14.3        Market opportunity for silicene  91

 

15           STANENE/TINENE            93

  • 15.1        Properties           93
  • 15.2        Applications       94
    • 15.2.1    Electronics          94
  • 15.3        Market opportunity for stanine/tinene  95

 

16           ANTIMONENE   97

  • 16.1        Properties           97
  • 16.2        Applications       97
  • 16.3        Market opportunity for antimonene        98

 

17           DIAMENE            99

  • 17.1        Properties           99
  • 17.2        Applications       99
  • 17.3        Market opportunity for diamene               99

 

18           INDIUM SELENIDE            101

  • 18.1        Properties           101
  • 18.2        Applications       101
    • 18.2.1    Electronics          101
  • 18.3        Market opportunity for indium selenide 102

 

19           LAYERED DOUBLE HYDROXIDES  104

  • 19.1        Properties           104
  • 19.2        Applications       104
    • 19.2.1    Environmental  104
    • 19.2.2    Hydrogen generation     105
    • 19.2.3    Supercapacitors 105
    • 19.2.4    Batteries              106
    • 19.2.5    Photovoltaics     106
    • 19.2.6    Catalysis               107
    • 19.2.7    Biomaterials       107
  • 19.3        Market opportunity for layered double hydroxides           109

 

20           2D MATERIALS PRODUCER AND SUPPLIER PROFILES         110

 

21           RESEARCH METHODOLOGY         115

  • 21.1        Technology Readiness Level (TRL)             115

 

22           REFERENCES       118

 

Tables

  • Table 1. Comparative analysis of graphene and other 2-D nanomaterials. 12
  • Table 2. Applications analysis of 2D materials.     14
  • Table 3. 2D materials types.        19
  • Table 4. Comparison of  top-down exfoliation methods to produce 2D materials. 22
  • Table 5. Comparison of the bottom-up synthesis methods to produce 2D materials.           23
  • Table 6. 2D Materials production methods.          23
  • Table 7. Applications of MXenes.              33
  • Table 8. TRL for transition metal dichalcogenides (TMD). 48
  • Table 9. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 56
  • Table 10. Prices of commercially available 2D materials.  110
  • Table 11. Technology Readiness Level (TRL) Examples.    116

 

Figures

  • Figure 1. Schematic of 2-D materials.       20
  • Figure 2. Structure of hexagonal boron nitride.   26
  • Figure 3. BN nanosheet textiles application.         29
  • Figure 4. TRL for hexagonal boron-nitride.            30
  • Figure 5. Structure diagram of Ti3C2Tx.   32
  • Figure 6. TRL for MXenes.            41
  • Figure 7. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2)            42
  • Figure 8. SEM image of MoS2.    44
  • Figure 9. Atomic force microscopy image of a representative MoS2 thin-film transistor.   45
  • Figure 10. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge.            47
  • Figure 11. Borophene schematic.              50
  • Figure 12. TRL for hexagonal borophene.              53
  • Figure 13. Black phosphorus structure.   55
  • Figure 14. Black Phosphorus crystal.        56
  • Figure 15. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation.                58
  • Figure 16. TRL for hexagonal phosphorene.          60
  • Figure 17: Graphitic carbon nitride.          62
  • Figure 18. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology.         63
  • Figure 19. TRL for Graphitic carbon nitride.           65
  • Figure 20. Schematic of germanene.       67
  • Figure 21. TRL for Germanene.  74
  • Figure 22. Graphdiyne structure.              76
  • Figure 23. TRL for Graphdiyne.   80
  • Figure 24. Schematic of Graphane crystal.             82
  • Figure 25. TRL for Graphane.      84
  • Figure 26. Schematic of a monolayer of rhenium disulfide.            86
  • Figure 27. TRL for rhenium disulfide (ReS2) and diselenide (ReSe2).          87
  • Figure 28. Silicene structure.       89
  • Figure 29. Monolayer silicene on a silver (111) substrate.               89
  • Figure 30. Silicene transistor.      90
  • Figure 31. TRL for silicene.            91
  • Figure 32. Crystal structure for stanene. 93
  • Figure 33. Atomic structure model for the 2D stanene on Bi2Te3(111).     94
  • Figure 34. TRL for Stanene/tinene.           95
  • Figure 35. TRL for Antimonene  98
  • Figure 36. TRL for diamene.         99
  • Figure 37. Schematic of Indium Selenide (InSe). 101
  • Figure 38. TRL for indium selenide.          103
  • Figure 39. TRL for layered double hydroxides.     109

 

 

 

The Global Market for Non-Graphene 2D Materials
The Global Market for Non-Graphene 2D Materials
PDF download.

The Global Market for Non-Graphene 2D Materials
The Global Market for Non-Graphene 2D Materials
Print edition, including tracked delivery.

The Global Market for Non-Graphene 2D Materials
The Global Market for Non-Graphene 2D Materials
PDF and print edition, including tracked delivery.

To purchase by invoice (bank transfer or cheque) please select this option after Add to Cart, or contact info@futuremarketsinc.com or use our Order Form.