The Global Market for Non-Graphene 2D Materials

0

Published October 2021 | 82 pages, 9 tables, 30figures | Table of contents

Due to its exceptional transport, mechanical and thermal properties, graphene has been at the forefront of nanomaterials research over the past few years. Its development has enabled researchers to explore other 2D layered materials, such as the transition metal dichalcogenides (TMD), a wide variety of oxides and nitrides and clays. Several types are now commercially available from advanced materials producers.

 2D materials covered in this report include:

  • transition metal dichalcogenides (TMD).
  • hexagonal boron nitride (h-BN).
  • MXenes.
  • borophene.
  • phosphorene.
  • graphitic carbon nitride.
  • germanene.
  • graphane.
  • graphdiyne.
  • stanene/tinene.
  • tungsten diselenide.
  • rhenium disulfide.
  • diamene.
  • silicene.
  • antimonene.
  • indium selenide.
  • layered double hydroxides. 

 

Report contents include:

  • Properties of 2D materials.
  • Applications of 2D materials.
  • Addressable markets for 2D materials.
  • Production and pricing of 2D materials. 
  • Profiles of 2D materials producers and suppliers.

1              INTRODUCTION 9

  • 1.1          What are 2D materials? 9
  • 1.2          Comparative analysis of graphene and other 2D materials              12

 

2              2D MATERIALS PRODUCTION METHODS 14

  • 2.1          Top-down exfoliation     14
    • 2.1.1      Mechanical exfoliation method 15
    • 2.1.2      Liquid exfoliation method            16
  • 2.2          Bottom-up synthesis      16
    • 2.2.1      Chemical synthesis in solution    16
    • 2.2.2      Chemical vapor deposition           17

 

3              TYPES OF 2D MATERIALS              18

  • 3.1          Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)        18
    • 3.1.1      Properties           18
    • 3.1.2      Applications and markets             19
      • 3.1.2.1   Electronics          19
      • 3.1.2.2   Fuel cells              20
      • 3.1.2.3   Adsorbents        20
      • 3.1.2.4   Photodetectors 20
      • 3.1.2.5   Textiles 20
      • 3.1.2.6   Biomedical          21
  • 3.2          MXenes               22
    • 3.2.1      Properties           22
    • 3.2.2      Applications       23
      • 3.2.2.1   Catalysts              23
      • 3.2.2.2   Hydrogels            23
      • 3.2.2.3   Energy storage devices  23
      • 3.2.2.4   Gas Separation  24
      • 3.2.2.5   Liquid Separation             24
      • 3.2.2.6   Antibacterials    24
  • 3.3          Transition metal dichalcogenides (TMD) 25
    • 3.3.1      Properties           25
      • 3.3.1.1   Molybdenum disulphide (MoS2)               26
      • 3.3.1.2   Tungsten ditelluride (WTe2)        27
    • 3.3.2      Applications       27
      • 3.3.2.1   Electronics          27
      • 3.3.2.2   Optoelectronics 28
      • 3.3.2.3   Biomedical          28
      • 3.3.2.4   Piezoelectrics    28
      • 3.3.2.5   Sensors 28
      • 3.3.2.6   Filtration              29
      • 3.3.2.7   Batteries and supercapacitors    29
      • 3.3.2.8   Fiber lasers         29
  • 3.4          Borophene         30
    • 3.4.1      Properties           30
    • 3.4.2      Applications       30
      • 3.4.2.1   Energy storage  30
      • 3.4.2.2   Hydrogen storage            31
      • 3.4.2.3   Sensors 31
      • 3.4.2.4   Electronics          31
  • 3.5          Phosphorene/ Black phosphorus              32
    • 3.5.1      Properties           32
    • 3.5.2      Applications       33
      • 3.5.2.1   Electronics          33
      • 3.5.2.2   Field effect transistors   33
      • 3.5.2.3   Thermoelectrics               34
      • 3.5.2.4   Batteries              34
      • 3.5.2.5   Supercapacitors 35
      • 3.5.2.6   Photodetectors 35
      • 3.5.2.7   Sensors 35
  • 3.6          Graphitic carbon nitride (g-C3N4)             37
    • 3.6.1      Properties           37
    • 3.6.2      C2N        37
    • 3.6.3      Applications       38
      • 3.6.3.1   Electronics          38
      • 3.6.3.2   Filtration membranes    38
      • 3.6.3.3   Photocatalysts  38
      • 3.6.3.4   Batteries              38
      • 3.6.3.5   Sensors 38
  • 3.7          Germanene       39
    • 3.7.1      Properties           39
    • 3.7.2      Applications       40
      • 3.7.2.1   Electronics          41
      • 3.7.2.2   Batteries              41
  • 3.8          Graphdiyne        42
    • 3.8.1      Properties           42
    • 3.8.2      Applications       43
      • 3.8.2.1   Electronics          43
      • 3.8.2.2   Batteries              43
      • 3.8.2.3   Separation membranes 44
      • 3.8.2.4   Water filtration 44
      • 3.8.2.5   Photocatalysts  44
      • 3.8.2.6   Photovoltaics     44
      • 3.8.2.7   Gas separation  44
  • 3.9          Graphane            45
    • 3.9.1      Properties           45
    • 3.9.2      Applications       45
      • 3.9.2.1   Electronics          46
      • 3.9.2.2   Hydrogen storage            46
  • 3.10        Rhenium disulfide (ReS2) and diselenide (ReSe2)               47
    • 3.10.1    Properties           47
    • 3.10.2    Applications       47
  • 3.11        Silicene 48
    • 3.11.1    Properties           48
    • 3.11.2    Applications       49
      • 3.11.2.1                Electronics          49
      • 3.11.2.2                Thermoelectrics               50
      • 3.11.2.3                Batteries              50
      • 3.11.2.4                Sensors 50
      • 3.11.2.5                Biomedical          50
  • 3.12        Stanene/tinene 51
    • 3.12.1    Properties           51
    • 3.12.2    Applications       52
      • 3.12.2.1                Electronics          52
  • 3.13        Antimonene      53
    • 3.13.1    Properties           53
    • 3.13.2    Applications       53
    • 3.14        Indium selenide 54
    • 3.14.1    Properties           54
    • 3.14.2    Applications       54
      • 3.14.2.1                Electronics          54
  • 3.15        Layered double hydroxides (LDH)             55
    • 3.15.1    Properties           55
    • 3.15.2    Applications       55
      • 3.15.2.1                Adsorbents        55
      • 3.15.2.2                Catalyst 55
      • 3.15.2.3                Sensors 55
      • 3.15.2.4                Electrodes           56
      • 3.15.2.5                Flame Retardants            56
      • 3.15.2.6                Biosensors          56
      • 3.15.2.7                Tissue engineering          57
      • 3.15.2.8                Anti-Microbials 57
      • 3.15.2.9                Drug Delivery     57

 

4              2D MATERIALS PRODUCER AND SUPPLIER PROFILES         58

 

5              RESEARCH METHODOLOGY         75

 

6              REFERENCES       76

 

List of Tables

  • Table 1. 2D materials types.        11
  • Table 2. Comparative analysis of graphene and other 2-D nanomaterials. 12
  • Table 3. Comparison of  top-down exfoliation methods to produce 2D materials. 14
  • Table 4. Comparison of the bottom-up synthesis methods to produce 2D materials.           17
  • Table 5. Properties of hexagonal boron nitride (h-BN).    19
  • Table 6. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 33
  • Table 7. Properties and applications of functionalized germanene.            40
  • Table 8. GDY-based anode materials in LIBs and SIBs        43
  • Table 9. Physical and electronic properties of Stanene.   52

 

List of Figures

  • Figure 1. Structures of nanomaterials based on dimensions.         9
  • Figure 2. Schematic of 2-D materials.       11
  • Figure 3. Diagram of the mechanical exfoliation method.               15
  • Figure 4. Diagram of liquid exfoliation method    16
  • Figure 5. Structure of hexagonal boron nitride.   18
  • Figure 6. BN nanosheet textiles application.         21
  • Figure 7. Structure diagram of Ti3C2Tx.   22
  • Figure 8.  Types and applications of 2D TMDCs.   25
  • Figure 9. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2)            26
  • Figure 10. SEM image of MoS2.  26
  • Figure 11. Atomic force microscopy image of a representative MoS2 thin-film transistor. 28
  • Figure 12. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge.            29
  • Figure 13. Borophene schematic.              30
  • Figure 14. Black phosphorus structure.   32
  • Figure 15. Black Phosphorus crystal.        33
  • Figure 16. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation.                34
  • Figure 17: Graphitic carbon nitride.          37
  • Figure 18. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology.         38
  • Figure 19. Schematic of germanene.       39
  • Figure 20. Graphdiyne structure.              42
  • Figure 21. Schematic of Graphane crystal.             45
  • Figure 22. Schematic of a monolayer of rhenium disulfide.            47
  • Figure 23. Silicene structure.       48
  • Figure 24. Monolayer silicene on a silver (111) substrate.               49
  • Figure 25. Silicene transistor.      49
  • Figure 26. Crystal structure for stanene. 51
  • Figure 27. Atomic structure model for the 2D stanene on Bi2Te3(111).     52
  • Figure 28. Schematic of Indium Selenide (InSe). 54
  • Figure 29. Application of Li-Al LDH as CO2 sensor.             56
  • Figure 30. Graphene-based membrane dehumidification test cell.              65
  •  

 

The Global Market for Non-Graphene 2D Materials
The Global Market for Non-Graphene 2D Materials
PDF download.

The Global Market for Non-Graphene 2D Materials
The Global Market for Non-Graphene 2D Materials
Print edition, including tracked delivery.

The Global Market for Non-Graphene 2D Materials
The Global Market for Non-Graphene 2D Materials
PDF and print edition, including tracked delivery.

To purchase by invoice (bank transfer or cheque) please select this option after Add to Cart, or contact info@futuremarketsinc.com or use our Order Form.