The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030

0

Potential applications for the printed, flexible and stretchable electronics market appear endless. The rapid boom in smart wearable and integrated electronic devices has stimulated demand for advanced intelligent systems with high performance, micro size, mechanical flexibility, and high-temperature stability for application as  flexible and stretchable displays, personal health monitoring, human motion capturing, smart textiles, electronic skins and more. The key requirement for these applications is flexibility and stretchability, as these devices are subject to various mechanical deformations including twisting, bending, folding, and stretching during operation.

The development of printed, flexible and stretchable conductors over the last decade has resulted in commercialization of flexible and stretchable sensors, circuits, displays, and energy harvesters for next-generation wearables and soft robotics. These systems must be able to conform to the shape of and survive the environment in which they must operate. They are typically fabricated on flexible plastic substrates or are printed/woven into fabrics.

The electronics industry is moving at a fast pace from standard, inflexible form factors to stretchable and conformable devices. Printed, flexible and stretchable electronics products are increasing weekly from wearables for healthcare to smart packaging, sensors, automotive tail lights and displays, flexible displays, photovoltaics and more.

Based on a new generation of advanced materials, printed, flexible and stretchable sensors and electronics will enable new possibilities in a diverse range of industries from healthcare to automotive to buildings. These technologies will drive innovation in smart medical technology, automotive, smart manufacturing, Internet of Things (IoT) and consumer electronics.

Recent advances in stimuli-responsive surfaces and interfaces, sensors and actuators, flexible electronics, nanocoatings and conductive nanomaterials has led to the development of a new generation of smart and adaptive electronic fibers, yarns and fabrics for application in E-textiles. Wearable low-power silicon electronics, light-emitting diodes (LEDs) fabricated on fabrics, textiles with integrated Lithium-ion batteries (LIB) and electronic devices such as smart glasses, watches and lenses have been widely investigated and commercialized. Smart textiles and garments can sense environmental stimuli and react or adapt in a predetermined way. This involves either embedding or integrating sensors/actuators ad electronic components into textiles for use in applications such as medical diagnostics and health monitoring, consumer electronics, safety instruments and automotive textiles.

In the flexible displays market, electronics giants such as Samsung and LG Electronics are rolling our flexible, foldable and rollable smartphone and tablet products. LGs rollable LG Signature’s OLED TV R will be available in 2020 and foldable smartphones have already come to market.

Wearable and mobile health monitoring technologies have recently received enormous interest worldwide due to the rapidly aging global populations and the drastically increasing demand for in-home healthcare. Commercially available and near commercial wearable devices facilitate the transmission of biomedical informatics and personal health recording. Body worn sensors, which can provide real-time continuous measurement of pertinent physiological parameters noninvasively and comfortably for extended periods of time, are of crucial importance for emerging applications of mobile medicine. Wearable sensors that can wirelessly provide pertinent health information while remaining unobtrusive, comfortable, low cost, and easy to operate and interpret, play an essential role.

Battery and electronics producers require thin, flexible energy storage and conversion devices to power their wearable technology. The growth in flexible electronics has resulted in increased demand for flexible, stretchable, bendable, rollable and foldable batteries and supercapacitors as power sources for application in flexible and wearable devices.

Many major companies have integrated conductive and electronic ink and materials in applications ranging from photovoltaics to smart packaging. There are over 100 companies with products in this space for RFID, smart clothing, sensors, antennas and transistors. As well as advancing product security and consumer interaction, the use of smart inks and coatings in active and intelligent packaging can help reduce food waste and improve medical compliance-which would have significant environmental benefits.

Report contents include:

  • Current and developmental printable, flexible and stretchable products.
  • Advanced materials used in printable, flexible and stretchable electronics and sensors.
  • Stage of commercialization for applications, from basic research to market entry. Markets covered include conductive inks, wearables and IoT, medical & healthcare sensors, electronic clothing & smart apparel, energy harvesting & storage, electronics components and flexible displays.
  • Market drivers and trends.
  • Market figures for printable, flexible and stretchable electronics, by markets, materials and applications to 2030.
  • Profiles of over 350 producers and product developers.
  • 122 companies profiled in conductive ink including Ash Chemical, Cemedine, DuPont, EMS/Nagase, , Henkel, Jujo Chemical, Panasonic, Taiyo, Toyobo, VFP Ink Technologies, and more.
  • 76 companies profiled in wearables including AerNos, Inc., Antelope, AshChromics Corporation, Bando Chemical, BeBop, Brewer Science, Bonbouton, Canatu Oy, HP1 Technologies Ltd, Nanusens, Nippon, Nitto Denko and more.
  • 54 companies profiled in medical and healthcare wearables including 1drop Inc., AerBetic, Inc. , AURA Devices, CareWear, CorTec Gmbh, Eccrine Systems, Fleming Medical, GE and more.
  • 37 companies profiled in electronic textiles (E-textiles) including AIQ Smart Clothing, Alphaclo, Directa Plus, Dupont, Hexoskin, Toray and more.
  • 34 companies profiled in energy storage and harvesting including Chivotech, Enfucell, Hitachi Zosen, Huizhou Markyn New Energy, LG Chem, Zinergy and more.
  • 38 companies profiled in printed, flexible and stretchable displays including CurveSYS GmbH, Denso, Etulipa, Karl Knauer, LG Display, Samsung and more.

Published January 2020 | 500 pages | 77 tables, 152 figures | Table of contents

The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030
The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030
PDF download.
The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030
The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030
Print edition (including tracked delivery).
The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030
The Global Market for Printed, Flexible and Stretchable Electronics 2020-2030
PDF download and print edition.

To order by invoice or find out more about this report please contact:
Future Markets, Inc,
Phone: +44 (0) 207 112 7500
Mobile: +44 (0) 7886128735
Email: info@futuremarketsinc.com

TABLE OF CONTENTS

1    EXECUTIVE SUMMARY…………………………………………………………. 31

  • 1.1     The evolution of electronics……………………………………………………………………………………………………. 32
    • 1.1.1       The wearables revolution………………………………………………………………………………………………. 32
    • 1.1.2       Flexible, thin, and large-area form factors………………………………………………………………………….. 33
  • 1.2     What are flexible and stretchable electronics?…………………………………………………………………………….. 34
    • 1.2.1       From rigid to flexible and stretchable………………………………………………………………………………… 34
    • 1.2.2       Organic and printed electronics……………………………………………………………………………………….. 36
    • 1.2.3       New conductive materials………………………………………………………………………………………………. 37
    • 1.2.4       Stretchable conductors………………………………………………………………………………………………….. 39
  • 1.3     Growth in flexible and stetchable electronics market…………………………………………………………………….. 39
    • 1.3.1       Recent growth in Printed, flexible and stretchable products…………………………………………………… 39
    • 1.3.2       Future growth……………………………………………………………………………………………………………… 40
    • 1.3.3       Nanotechnology as a market driver………………………………………………………………………………….. 41
    • 1.3.4       Growth in remote health monitoring and diagnostics……………………………………………………………. 41
  • 1.4     Products…………………………………………………………………………………………………………………………….. 42

2    RESEARCH METHODOLOGY………………………………………………… 45

3    PRINTED, FLEXIBLE AND STRETCHABLE  ELECTRONIC MATERIALS AND COMPOSITES………………………………………………… 46

  • 3.1     CARBON NANOTUBES………………………………………………………………………………………………………… 46
    • 3.1.1       Properties………………………………………………………………………………………………………………….. 46
    • 3.1.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 47
      • 3.1.2.1    Single-walled carbon nanotubes………………………………………………………………………………….. 48
    • 3.1.3       Applications in Printed, flexible and stretchable  electronics…………………………………………………… 49
  • 3.2     CONDUCTIVE POLYMERS (CP)…………………………………………………………………………………………….. 52
    • 3.2.1       Properties………………………………………………………………………………………………………………….. 52
      • 3.2.1.1    PDMS…………………………………………………………………………………………………………………… 53
      • 3.2.1.2    PEDOT: PSS………………………………………………………………………………………………………….. 53
        • 3.2.1.2.1      Transparency…………………………………………………………………………………………………. 53
    • 3.2.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 53
    • 3.2.3       Applications in Printed, flexible and stretchable  electronics…………………………………………………… 54
  • 3.3     GRAPHENE……………………………………………………………………………………………………………………….. 55
    • 3.3.1       Properties………………………………………………………………………………………………………………….. 56
    • 3.3.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 57
    • 3.3.3       Applications in Printed, flexible and stretchable  electronics…………………………………………………… 58
  • 3.4     METAL MESH…………………………………………………………………………………………………………………….. 61
    • 3.4.1       Properties………………………………………………………………………………………………………………….. 61
    • 3.4.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 63
    • 3.4.3       Applications in Printed, flexible and stretchable  electronics…………………………………………………… 63
  • 3.5     SILVER INK (Flake, nanoparticles, nanowires, ion)……………………………………………………………………… 64
    • 3.5.1       Silver flake…………………………………………………………………………………………………………………. 65
    • 3.5.2       Silver (Ag) nanoparticle ink…………………………………………………………………………………………….. 65
      • 3.5.2.1    Conductivity……………………………………………………………………………………………………………. 66
    • 3.5.3       Silver nanowires………………………………………………………………………………………………………….. 66
    • 3.5.4       Prices……………………………………………………………………………………………………………………….. 68
      • 3.5.4.1    Cost for printed area………………………………………………………………………………………………… 68
  • 3.6     COPPER INK……………………………………………………………………………………………………………………… 69
    • 3.6.1       Silver-coated copper…………………………………………………………………………………………………….. 69
    • 3.6.2       Copper (Cu) nanoparticle ink………………………………………………………………………………………….. 69
    • 3.6.3       Prices……………………………………………………………………………………………………………………….. 70
  • 3.7     NANOCELLULOSE………………………………………………………………………………………………………………. 71
    • 3.7.1       Properties………………………………………………………………………………………………………………….. 71
    • 3.7.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 72
    • 3.7.3       Applications in Printed, flexible and stretchable  electronics…………………………………………………… 73
      • 3.7.3.1    Nanopaper…………………………………………………………………………………………………………….. 74
      • 3.7.3.2    Paper memory………………………………………………………………………………………………………… 75
      • 3.7.3.3    Conductive inks………………………………………………………………………………………………………. 76
  • 3.8     NANOFIBERS…………………………………………………………………………………………………………………….. 77
    • 3.8.1       Properties………………………………………………………………………………………………………………….. 77
    • 3.8.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 77
    • 3.8.3       Applications in Printed, flexible and stretchable  electronics…………………………………………………… 77
  • 3.9     QUANTUM DOTS………………………………………………………………………………………………………………… 79
    • 3.9.1       Properties………………………………………………………………………………………………………………….. 79
    • 3.9.2       Properties utilized in Printed, flexible and stretchable  electronics…………………………………………… 80
    • 3.9.3       Liquid Crystal Displays (LCD)…………………………………………………………………………………………. 81
    • 3.9.4       QD-LCD TVs/QLEDs……………………………………………………………………………………………………. 83
      • 3.9.4.1    Quantum dot enhancement film (QDEF) for current QLEDs………………………………………………. 85
      • 3.9.4.2    Quantum Dot on Glass (QDOG)………………………………………………………………………………….. 86
      • 3.9.4.3    Quantum dot colour filters………………………………………………………………………………………….. 87
      • 3.9.4.4    Quantum dots on-chip………………………………………………………………………………………………. 88
      • 3.9.4.5    Electroluminescent quantum dots………………………………………………………………………………… 89
      • 3.9.4.6    QD-Micro-LEDs………………………………………………………………………………………………………. 89
      • 3.9.4.7    Flexible QD displays…………………………………………………………………………………………………. 91
      • 3.9.4.8    Flexible QLEDs……………………………………………………………………………………………………….. 92
      • 3.9.4.9    LG Nanocell……………………………………………………………………………………………………………. 92
  • 3.10        GRAPHENE AND CARBON QUANTUM DOTS……………………………………………………………………… 93
    • 3.10.1     Carbon quantum dots……………………………………………………………………………………………………. 93
    • 3.10.2     Graphene quantum dots………………………………………………………………………………………………… 93
      • 3.10.2.1       Synthesis…………………………………………………………………………………………………………… 95
      • 3.10.2.2       Recent synthesis methods…………………………………………………………………………………….. 96
  • 3.11        ELECTROACTIVE POLYMERS (EAPS)……………………………………………………………………………….. 98
    • 3.11.1     Properties………………………………………………………………………………………………………………….. 98
    • 3.11.2     Properties utilized in printed, flexible and stretchable electronics…………………………………………….. 99
    • 3.11.3     Applications………………………………………………………………………………………………………………. 100
  • 3.12        PEROVSKITE QUANTUM DOTS (PQDs)……………………………………………………………………………. 101
    • 3.12.1     Properties…………………………………………………………………………………………………………………. 101
    • 3.12.2     Comparison to conventional quantum dots………………………………………………………………………. 102
    • 3.12.3     Synthesis methods……………………………………………………………………………………………………… 102
    • 3.12.4     Applications………………………………………………………………………………………………………………. 102
      • 3.12.4.1       Displays…………………………………………………………………………………………………………… 103
  • 3.13        OTHER TYPES……………………………………………………………………………………………………………… 105
    • 3.13.1     Gold (Au) nanoparticle ink……………………………………………………………………………………………. 105
    • 3.13.2     Siloxane inks…………………………………………………………………………………………………………….. 105
  • 3.14        OTHER 2-D MATERIALS…………………………………………………………………………………………………. 106
    • 3.14.1     BOROPHENE……………………………………………………………………………………………………………. 106
      • 3.14.1.1       Properties………………………………………………………………………………………………………… 106
      • 3.14.1.2       Applications……………………………………………………………………………………………………… 106
    • 3.14.2     BLACK PHOSPHORUS/PHOSPHORENE……………………………………………………………………….. 107
      • 3.14.2.1       Properties………………………………………………………………………………………………………… 107
      • 3.14.2.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 109
    • 3.14.3     GRAPHITIC CARBON NITRIDE (g-C3N4)……………………………………………………………………….. 109
      • 3.14.3.1       Properties………………………………………………………………………………………………………… 109
      • 3.14.3.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 110
    • 3.14.4     GERMANENE…………………………………………………………………………………………………………… 110
      • 3.14.4.1       Properties………………………………………………………………………………………………………… 110
      • 3.14.4.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 111
    • 3.14.5     GRAPHDIYNE…………………………………………………………………………………………………………… 111
      • 3.14.5.1       Properties………………………………………………………………………………………………………… 112
      • 3.14.5.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 112
    • 3.14.6     GRAPHANE……………………………………………………………………………………………………………… 112
      • 3.14.6.1       Properties………………………………………………………………………………………………………… 113
      • 3.14.6.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 113
    • 3.14.7     HEXAGONAL BORON NITRIDE……………………………………………………………………………………. 113
      • 3.14.7.1       Properties………………………………………………………………………………………………………… 114
      • 3.14.7.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 114
    • 3.14.8     MOLYBDENUM DISULFIDE (MoS2)………………………………………………………………………………. 115
      • 3.14.8.1       Properties………………………………………………………………………………………………………… 115
      • 3.14.8.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 116
    • 3.14.9     RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)…………………………………………………. 117
      • 3.14.9.1       Properties………………………………………………………………………………………………………… 118
      • 3.14.9.2       Applications in Printed, flexible and stretchable electronics…………………………………………. 118
    • 3.14.10        SILICENE…………………………………………………………………………………………………………….. 118
      • 3.14.10.1     Properties………………………………………………………………………………………………………… 118
      • 3.14.10.2     Applications in Printed, flexible and stretchable electronics…………………………………………. 119
    • 3.14.11        STANENE/TINENE………………………………………………………………………………………………… 120
      • 3.14.11.1     Properties………………………………………………………………………………………………………… 120
      • 3.14.11.2     Applications in Printed, flexible and stretchable electronics…………………………………………. 121
    • 3.14.12        TUNGSTEN DISELENIDE……………………………………………………………………………………….. 121
      • 3.14.12.1     Properties………………………………………………………………………………………………………… 122
      • 3.14.12.2     Applications in Printed, flexible and stretchable electronics…………………………………………. 122
    • 3.14.13        ANTIMONENE………………………………………………………………………………………………………. 122
      • 3.14.13.1     Properties………………………………………………………………………………………………………… 122
      • 3.14.13.2     Applications……………………………………………………………………………………………………… 122
    • 3.14.14        INDIUM SELENIDE………………………………………………………………………………………………… 123
      • 3.14.14.1     Properties………………………………………………………………………………………………………… 123
      • 3.14.14.2     Applications……………………………………………………………………………………………………… 123

4    PRINTED, FLEXIBLE AND STRETCHABLE  CONDUCTIVE INKS 124

  • 4.1     MARKET DRIVERS…………………………………………………………………………………………………………….. 124
  • 4.2     CONDUCTIVE INK TYPES…………………………………………………………………………………………………… 125
    • 4.2.1       Conductive ink materials………………………………………………………………………………………………. 126
    • 4.2.2       Commercially available conductive ink products………………………………………………………………… 126
    • 4.2.3       Improvements in conductive ink performance……………………………………………………………………. 128
  • 4.3     PRINTING METHODS…………………………………………………………………………………………………………. 128
    • 4.3.1       Nanoparticle ink…………………………………………………………………………………………………………. 131
  • 4.4     Sintering…………………………………………………………………………………………………………………………… 131
  • 4.5     Conductive Filaments………………………………………………………………………………………………………….. 131
  • 4.6     Conductive films, foils and grids…………………………………………………………………………………………….. 132
  • 4.7     Inkjet printing in flexible electronics…………………………………………………………………………………………. 132
  • 4.8     APPLICATIONS…………………………………………………………………………………………………………………. 132
    • 4.8.1       Current products………………………………………………………………………………………………………… 132
    • 4.8.2       Advanced materials solutions………………………………………………………………………………………… 133
      • 4.8.2.1.1      Graphene conductive inks……………………………………………………………………………….. 135
    • 4.8.3       RFID……………………………………………………………………………………………………………………….. 137
    • 4.8.4       Smart labels……………………………………………………………………………………………………………… 138
    • 4.8.5       Smart clothing and electronic textiles………………………………………………………………………………. 139
    • 4.8.6       Printed sensors………………………………………………………………………………………………………….. 139
    • 4.8.7       Printed batteries…………………………………………………………………………………………………………. 140
    • 4.8.8       Printed antennas………………………………………………………………………………………………………… 141
    • 4.8.9       Printed heaters………………………………………………………………………………………………………….. 143
    • 4.8.10     In-mold electronics……………………………………………………………………………………………………… 143
    • 4.8.11     Printed transistors………………………………………………………………………………………………………. 146
  • 4.9     GLOBAL MARKET SIZE………………………………………………………………………………………………………. 147
  • 4.10        COMPANY PROFILES……………………………………………………………………………………………………. 150

5    WEARABLE ELECTRONICS AND IOT…………………………………… 233

  • 5.1     MARKET DRIVERS…………………………………………………………………………………………………………….. 233
  • 5.2     APPLICATIONS…………………………………………………………………………………………………………………. 236
    • 5.2.1       Current state of the art………………………………………………………………………………………………… 236
    • 5.2.2       Commercially available wearable electronics……………………………………………………………………… 237
    • 5.2.3       Advanced materials solutions………………………………………………………………………………………… 239
    • 5.2.4       Flexible and stretchable transistors………………………………………………………………………………… 240
    • 5.2.5       Flexible and stretchable actuators………………………………………………………………………………….. 241
    • 5.2.6       Stretchable artificial skin………………………………………………………………………………………………. 242
    • 5.2.7       Transparent conductive electrodes…………………………………………………………………………………. 243
    • 5.2.8       Flexible and stretchable transparent electrodes…………………………………………………………………. 246
      • 5.2.8.1    Carbon nanotubes (SWNT)………………………………………………………………………………………. 247
      • 5.2.8.2    Double-walled carbon nanotubes………………………………………………………………………………. 247
      • 5.2.8.3    Graphene…………………………………………………………………………………………………………….. 247
      • 5.2.8.4    Silver nanowires…………………………………………………………………………………………………….. 248
      • 5.2.8.5    Nanocellulose……………………………………………………………………………………………………….. 249
        • 5.2.8.5.1      Flexible energy storage…………………………………………………………………………………… 251
      • 5.2.8.6    Copper nanowires………………………………………………………………………………………………….. 251
      • 5.2.8.7    Nanofibers……………………………………………………………………………………………………………. 251
    • 5.2.9       Felxible and stretchable wearable sensors……………………………………………………………………….. 252
      • 5.2.9.1    Current stage of the art……………………………………………………………………………………………. 252
      • 5.2.9.2    Advanced materials solutions……………………………………………………………………………………. 254
        • 5.2.9.2.1      Conductive nanofibers…………………………………………………………………………………….. 254
        • 5.2.9.2.2      Graphene…………………………………………………………………………………………………….. 256
      • 5.2.9.3    Wearable gas sensors…………………………………………………………………………………………….. 257
      • 5.2.9.4    Wearable strain sensors………………………………………………………………………………………….. 257
      • 5.2.9.5    Wearable tactile sensors………………………………………………………………………………………….. 257
      • 5.2.9.6    Industrial monitoring……………………………………………………………………………………………….. 258
      • 5.2.9.7    Military…………………………………………………………………………………………………………………. 259
  • 5.3     GLOBAL MARKET SIZE………………………………………………………………………………………………………. 259
  • 5.4     COMPANY PROFILES………………………………………………………………………………………………………… 263

6    MEDICAL AND HEALTHCARE SENSORS AND WEARABLES… 309

  • 6.1     MARKET DRIVERS…………………………………………………………………………………………………………….. 309
  • 6.2     APPLICATIONS…………………………………………………………………………………………………………………. 310
    • 6.2.1       Current state of the art………………………………………………………………………………………………… 311
    • 6.2.2       Advanced materials solutions………………………………………………………………………………………… 315
      • 6.2.2.1    Skin sensors…………………………………………………………………………………………………………. 315
      • 6.2.2.2    Nanomaterials-based devices…………………………………………………………………………………… 315
      • 6.2.2.3    Patch-type skin sensors…………………………………………………………………………………………… 318
      • 6.2.2.4    Skin temperature monitoring…………………………………………………………………………………….. 320
      • 6.2.2.5    Hydration sensors………………………………………………………………………………………………….. 321
      • 6.2.2.6    Wearable sweat sensors………………………………………………………………………………………….. 321
      • 6.2.2.7    UV patches…………………………………………………………………………………………………………… 322
      • 6.2.2.8    Smart footwear………………………………………………………………………………………………………. 323
      • 6.2.2.9    Smart wound care………………………………………………………………………………………………….. 324
  • 6.3     GLOBAL MARKET SIZE………………………………………………………………………………………………………. 325
  • 6.4     COMPANY PROFILES………………………………………………………………………………………………………… 328

7    ELECTRONIC TEXTILES (E-TEXTILES)…………………………………. 360

  • 7.1     MARKET DRIVERS…………………………………………………………………………………………………………….. 360
  • 7.2     APPLICATIONS…………………………………………………………………………………………………………………. 362
    • 7.2.1       Current state of the art………………………………………………………………………………………………… 363
    • 7.2.2       Advanced materials solutions………………………………………………………………………………………… 365
    • 7.2.3       Conductive fibres……………………………………………………………………………………………………….. 370
    • 7.2.4       Conductive yarns……………………………………………………………………………………………………….. 370
    • 7.2.5       Stretchable yarns for electronics……………………………………………………………………………………. 371
    • 7.2.6       Stretchable E-fabrics…………………………………………………………………………………………………… 372
    • 7.2.7       Conductive coatings……………………………………………………………………………………………………. 373
    • 7.2.8       Smart helmets…………………………………………………………………………………………………………… 374
    • 7.2.9       Solar energy harvesting textiles…………………………………………………………………………………….. 375
  • 7.3     GLOBAL MARKET SIZE………………………………………………………………………………………………………. 376
  • 7.4     COMPANY PROFILES………………………………………………………………………………………………………… 378

8    PRINTED, FLEXIBLE AND STRETCHABLE ENERGY STORAGE AND HARVESTING………………………………………………………………….. 401

  • 8.1     MARKET DRIVERS…………………………………………………………………………………………………………….. 401
  • 8.2     APPLICATIONS…………………………………………………………………………………………………………………. 402
    • 8.2.1       Current state of the art………………………………………………………………………………………………… 402
    • 8.2.2       Flexible and stretchable batteries…………………………………………………………………………………… 405
      • 8.2.2.1    Flexible and stretchable LIBs……………………………………………………………………………………. 406
        • 8.2.2.1.1      Fiber-shaped Lithium-Ion batteries…………………………………………………………………….. 406
        • 8.2.2.1.2      Stretchable lithium-ion battery…………………………………………………………………………… 407
        • 8.2.2.1.3      Kirigami lithium-ion battery……………………………………………………………………………….. 407
      • 8.2.2.2    Stretchable Zn-based batteries………………………………………………………………………………….. 408
    • 8.2.3       Flexible and stretchable supercapacitors…………………………………………………………………………. 409
    • 8.2.4       Stretchable heaters…………………………………………………………………………………………………….. 411
    • 8.2.5       Stretchable solar cells…………………………………………………………………………………………………. 413
    • 8.2.6       Stretchable nanogenerators………………………………………………………………………………………….. 414
    • 8.2.7       Stretchable piezoelectric energy harvesting……………………………………………………………………… 414
    • 8.2.8       Stretchable triboelectric energy harvesting……………………………………………………………………….. 414
  • 8.3     GLOBAL MARKET SIZE………………………………………………………………………………………………………. 416
  • 8.4     COMPANY PROFILES………………………………………………………………………………………………………… 419

9    PRINTED, FLEXIBLE AND STRETCHABLE DISPLAYS AND ELECTRONIC COMPONENTS…………………………………………………… 436

  • 9.1     MARKET DRIVERS…………………………………………………………………………………………………………….. 436
  • 9.2     APPLICATIONS…………………………………………………………………………………………………………………. 437
    • 9.2.1       Printed, flexible and stretchable circuit boards and interconnects………………………………………….. 438
    • 9.2.2       Printed, flexible and stretchable transistors………………………………………………………………………. 439
    • 9.2.3       Printed and flexible displays………………………………………………………………………………………….. 441
      • 9.2.3.1    Flexible LCDs……………………………………………………………………………………………………….. 442
      • 9.2.3.2    Flexible OLEDs (FOLED)…………………………………………………………………………………………. 443
      • 9.2.3.3    Flexible AMOLED…………………………………………………………………………………………………… 446
      • 9.2.3.4    Foldable and rollable smartphones…………………………………………………………………………….. 447
      • 9.2.3.5    Printed OLED displays…………………………………………………………………………………………….. 448
      • 9.2.3.6    OLED packaging……………………………………………………………………………………………………. 449
      • 9.2.3.7    Flexible electrophoretic displays………………………………………………………………………………… 449
      • 9.2.3.8    Stretchable backplanes and displays………………………………………………………………………….. 450
      • 9.2.3.9    Electrowetting displays……………………………………………………………………………………………. 452
      • 9.2.3.10       Electrochromic Displays………………………………………………………………………………………. 452
      • 9.2.3.11       Thermochromic Displays……………………………………………………………………………………… 453
    • 9.2.4       Flexible OLED lighting…………………………………………………………………………………………………. 453
    • 9.2.5       Quantum dot lighting…………………………………………………………………………………………………… 454
    • 9.2.6       Stretchable lighting……………………………………………………………………………………………………… 454
  • 9.3     GLOBAL MARKET SIZE………………………………………………………………………………………………………. 456
  • 9.4     COMPANY PROFILES………………………………………………………………………………………………………… 457

10 REFERENCES…………………………………………………………………….. 482

 

TABLES

  • Table 1: Evolution of wearable devices, 2011-2017………………………………………………………………………………….. 33
    Table 2: Advanced materials for Printed, flexible and stretchable  sensors and Electronics-Advantages and disadvantages……………………………………………………………………………………………………………………………. 37
    Table 3: Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE)……………………………………………………………………………………… 38
    Table 4: Markets for wearable devices and applications…………………………………………………………………………….. 40
    Table 5: Properties of CNTs and comparable materials…………………………………………………………………………….. 47
    Table 6: Market and applications for SWCNTs in transparent conductive films……………………………………………….. 50
    Table 7: Companies developing carbon nanotubes for applications in Printed, flexible and stretchable  electronics… 51
    Table 8: Types of flexible conductive polymers, properties and applications…………………………………………………… 53
    Table 9: Properties of graphene…………………………………………………………………………………………………………… 56
    Table 10: Companies developing graphene for applications in Printed, flexible and stretchable  electronics………….. 60
    Table 11: Advantages and disadvantages of fabrication techniques to produce metal mesh structures………………… 62
    Table 12: Types of flexible conductive polymers, properties and applications…………………………………………………. 63
    Table 13: Companies developing metal mesh for applications in Printed, flexible and stretchable  electronics……….. 63
    Table 14: Nanocellulose properties………………………………………………………………………………………………………. 71
    Table 15: Properties and applications of nanocellulose……………………………………………………………………………… 72
    Table 16: Properties of flexible electronics‐cellulose nanofiber film (nanopaper)……………………………………………… 72
    Table 17: Properties of flexible electronics cellulose nanofiber films……………………………………………………………… 74
    Table 18: Companies developing nanocellulose for applications in Printed, flexible and stretchable  electronics…….. 75
    Table 19: Advantages and disadvantages of LCDs, OLEDs and QDs…………………………………………………………… 81
    Table 20: Typical approaches for integrating QDs into displays…………………………………………………………………… 84
    Table 21: Current and planned Quantum Dot TVs by manufacturer, availability, size range and price range………….. 85
    Table 22: QD colour filter options and advantages……………………………………………………………………………………. 87
    Table 23. Comparison of graphene QDs and semiconductor QDs……………………………………………………………….. 93
    Table 24. Photoluminescent properties of GQDs……………………………………………………………………………………… 95
    Table 25. Synthesis methods for graphene quantum dots………………………………………………………………………….. 95
    Table 26. Recent synthesis methods for GQDs……………………………………………………………………………………….. 96
    Table 27: Graphene Quantum Dots in optoelectronics………………………………………………………………………………. 97
    Table 28: Comparative properties of conventional QDs and Perovskite QDs………………………………………………… 102
    Table 29: Applications of perovskite QDs……………………………………………………………………………………………… 102
    Table 30: Properties of perovskite QLEDs comparative to OLED and QLED………………………………………………… 104
    Table 31: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2……………………… 108
    Table 32: Market drivers for Printed, flexible and stretchable  conductive inks………………………………………………. 124
    Table 33: Typical conductive ink formulation…………………………………………………………………………………………. 125
    Table 34. Comparative properties of conductive inks………………………………………………………………………………. 126
    Table 35. Commercially available conductive ink products……………………………………………………………………….. 126
    Table 36:  Characteristics of analog printing processes for conductive inks………………………………………………….. 128
    Table 37: Characteristics of digital printing processes for conductive inks…………………………………………………….. 129
    Table 38: Printable electronics products……………………………………………………………………………………………….. 132
    Table 39: Comparative properties of conductive inks………………………………………………………………………………. 133
    Table 40: Applications in conductive inks by type and benefits thereof………………………………………………………… 134
    Table 41: Opportunities for advanced materials in printed electronics…………………………………………………………. 137
    Table 42: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof……………… 140
    Table 43. Applications for conductive inks in in-mold electronics………………………………………………………………… 144
    Table 44: Price comparison of thin-film transistor (TFT) electronics technology……………………………………………… 146
    Table 45: Main markets for conductive inks, applications and revenues………………………………………………………. 147
    Table 46: Global market for conductive inks 2015-2030, revenues (million $), by ink types………………………………. 149
    Table 47: Market drivers for printed, flexible and stretchable electronics for wearables and IoT………………………… 233
    Table 48. Commercially available wearable electronic device products products……………………………………………. 237
    Table 49: Transparent conductive switches-PEDOT……………………………………………………………………………….. 243
    Table 50: Comparison of ITO replacements………………………………………………………………………………………….. 243
    Table 51: Applications in printed, flexible and stretchable electronics, by advanced materials type and benefits thereof……………………………………………………………………………………………………………………………………………… 245
    Table 52. Materials, transmittance, electrical property, and stretchability of stretchable transparent electrodes…….. 246
    Table 53: Graphene properties relevant to application in sensors………………………………………………………………. 256
    Table 54: Global market for wearable electronics, 2015-2030, by application, billions $…………………………………… 260
    Table 55: Market drivers for printed, flexible and stretchable medical and healthcare sensors and wearables………. 309
    Table 56: Wearable medical device products and stage of development……………………………………………………… 312
    Table 57: Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof. 316
    Table 58: Applications in patch-type skin sensors, by materials type and benefits thereof………………………………… 320
    Table 59: Market drivers for Printed, flexible and stretchable electronic textiles……………………………………………… 360
    Table 60: Types of smart textiles………………………………………………………………………………………………………… 362
    Table 61: Examples of smart textile products………………………………………………………………………………………… 362
    Table 62: Currently available technologies for smart textiles……………………………………………………………………… 363
    Table 63: Electronic textiles products…………………………………………………………………………………………………… 364
    Table 64: Applications in textiles, by advanced materials type and benefits thereof………………………………………… 365
    Table 65: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications……………………………………………………………………………………………………………………………………………… 367
    Table 66: Applications and benefits of graphene in textiles and apparel………………………………………………………. 373
    Table 67: Global electronic textiles market 2015-2030, revenues (billions USD)……………………………………………. 376
    Table 68: Market drivers for Printed, flexible and stretchable electronic energy storage and harvesting………………. 401
    Table 69: Wearable energy storage and energy harvesting products………………………………………………………….. 403
    Table 70: Applications in flexible and stretchable batteries, by materials type and benefits thereof…………………….. 405
    Table 71: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof…….. 410
    Table 72. Examples of materials used in flexible heaters and applications……………………………………………………. 411
    Table 73: Applications in energy harvesting textiles, by nanomaterials type and benefits thereof………………………. 412
    Table 74: Potential addressable market for thin film, flexible and printed batteries…………………………………………. 416
    Table 75: Market drivers for Printed, flexible and stretchable displays and electronic components…………………….. 437
    Table 76: Applications in flexible and stretchable circuit boards, by advanced materials type and benefits thereof… 438
    Table 77: Price comparison of thin-film transistor (TFT) electronics technology……………………………………………… 440
    Table 78. Foldable and rollable smartphones-state of commercial development by company…………………………… 447

FIGURES

  • Figure 1: Evolution of electronics………………………………………………………………………………………………………….. 32
  • Figure 2: Wove Band…………………………………………………………………………………………………………………………. 35
  • Figure 3: Wearable graphene medical sensor…………………………………………………………………………………………. 36
  • Figure 4: Applications timeline for organic and printed electronics……………………………………………………………….. 36
  • Figure 5: Mimo Baby Monitor………………………………………………………………………………………………………………. 42
  • Figure 6: Wearable health monitor incorporating graphene photodetectors……………………………………………………. 42
  • Figure 7. Stretchable and flexible electronics products………………………………………………………………………………. 42
  • Figure 8: Schematic of single-walled carbon nanotube………………………………………………………………………………. 48
  • Figure 9: Stretchable SWNT memory and logic devices for wearable electronics…………………………………………….. 49
  • Figure 10: Stretchable carbon aerogel incorporating carbon nanotubes. Credit: Guo et al…………………………………. 52
  • Figure 11: Graphene layer structure schematic……………………………………………………………………………………….. 57
  • Figure 12: Moxi flexible film developed for smartphone application………………………………………………………………. 58
  • Figure 13: Flexible graphene touch screen……………………………………………………………………………………………… 58
  • Figure 14: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………………………………………………………………………………….. 59
  • Figure 15: Flexible mobile phones with graphene transparent conductive film………………………………………………… 60
  • Figure 16: Large-area metal mesh touch panel……………………………………………………………………………………….. 62
  • Figure 17: Silver nanocomposite ink after sintering and resin bonding of discrete electronic components……………… 66
  • Figure 18: Flexible silver nanowire wearable mesh…………………………………………………………………………………… 67
  • Figure 19: Copper based inks on flexible substrate…………………………………………………………………………………… 69
  • Figure 20:  Cellulose nanofiber films……………………………………………………………………………………………………… 73
  • Figure 21: Nanocellulose photoluminescent paper……………………………………………………………………………………. 73
  • Figure 22: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………………………………………………………. 74
  • Figure 23: Foldable nanopaper……………………………………………………………………………………………………………. 74
  • Figure 24: Foldable nanopaper antenna………………………………………………………………………………………………… 75
  • Figure 25: Paper memory (ReRAM)……………………………………………………………………………………………………… 75
  • Figure 26: Quantum dot……………………………………………………………………………………………………………………… 79
  • Figure 27: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band. 80
  • Figure 28: QD-TV supply chain……………………………………………………………………………………………………………. 81
  • Figure 29: Quantum dot LED backlighting schematic………………………………………………………………………………… 83
  • Figure 30: Quantum dot film schematic………………………………………………………………………………………………….. 85
  • Figure 31: Quantum Dots on Glass schematic………………………………………………………………………………………… 86
  • Figure 32: Samsung 8K 65″ QD Glass…………………………………………………………………………………………………… 87
  • Figure 33: QD/OLED hybrid  schematic…………………………………………………………………………………………………. 88
  • Figure 34: Electroluminescent quantum dots schematic…………………………………………………………………………….. 89
  • Figure 35: The Wall microLED display…………………………………………………………………………………………………… 90
  • Figure 36: Individual red, green and blue microLED arrays based on quantum dots…………………………………………. 90
  • Figure 37: Ink-jet printed 5-inch AM-QLED display (80 dpi)………………………………………………………………………… 91
  • Figure 38:  Carbon nanotubes flexible, rechargeable yarn batteries incorporated into flexible, rechargeable yarn batteries…………………………………………………………………………………………………………………………………… 92
  • Figure 39: Flexible & stretchable LEDs based on quantum dots………………………………………………………………….. 92
  • Figure 40: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………………………………………………………………… 94
  • Figure 41. Graphene quantum dots………………………………………………………………………………………………………. 95
  • Figure 42: Schematic of GQD functionalization……………………………………………………………………………………….. 97
  • Figure 43: A pQLED device structure…………………………………………………………………………………………………… 101
  • Figure 44: Development roadmap for perovskite QDs……………………………………………………………………………… 103
  • Figure 45: Perovskite quantum dots under UV light…………………………………………………………………………………. 103
  • Figure 46: Borophene schematic………………………………………………………………………………………………………… 106
  • Figure 47: Black phosphorus structure…………………………………………………………………………………………………. 107
  • Figure 48: Black Phosphorus crystal……………………………………………………………………………………………………. 108
  • Figure 49: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation… 109
  • Figure 50: Graphitic carbon nitride………………………………………………………………………………………………………. 110
  • Figure 51: Schematic of germanene……………………………………………………………………………………………………. 110
  • Figure 52: Graphdiyne structure…………………………………………………………………………………………………………. 112
  • Figure 53: Schematic of Graphane crystal…………………………………………………………………………………………….. 113
  • Figure 54: Structure of hexagonal boron nitride……………………………………………………………………………………… 114
  • Figure 55: Structure of 2D molybdenum disulfide……………………………………………………………………………………. 115
  • Figure 56: SEM image of MoS2………………………………………………………………………………………………………….. 116
  • Figure 57: Atomic force microscopy image of a representative MoS2 thin-film transistor………………………………….. 116
  • Figure 58: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge………………………………………………………………………………………………………………………. 117
  • Figure 59: Schematic of a monolayer of rhenium disulphide……………………………………………………………………… 117
  • Figure 60: Silicene structure………………………………………………………………………………………………………………. 118
  • Figure 61: Monolayer silicene on a silver (111) substrate…………………………………………………………………………. 119
  • Figure 62: Silicene transistor……………………………………………………………………………………………………………… 120
  • Figure 63: Crystal structure for stanene……………………………………………………………………………………………….. 120
  • Figure 64: Atomic structure model for the 2D stanene on Bi2Te3(111)………………………………………………………… 121
  • Figure 65: Schematic of tungsten diselenide…………………………………………………………………………………………. 122
  • Figure 66: Schematic of Indium Selenide (InSe)…………………………………………………………………………………….. 123
  • Figure 67: BGT Materials graphene ink product……………………………………………………………………………………… 136
  • Figure 68: Flexible RFID tag………………………………………………………………………………………………………………. 137
  • Figure 69: Printed Battery…………………………………………………………………………………………………………………. 141
  • Figure 70: Graphene printed antenna………………………………………………………………………………………………….. 141
  • Figure 71: Printed antennas for aircraft………………………………………………………………………………………………… 142
  • Figure 72. Flexible printed heater……………………………………………………………………………………………………….. 143
  • Figure 73: Stretchable material for formed an in-molded electronics…………………………………………………………… 143
  • Figure 74: Wearable patch with a skin-compatible, pressure-sensitive adhesive……………………………………………. 144
  • Figure 75: Thin film transistor incorporating CNTs………………………………………………………………………………….. 146
  • Figure 76: Global market for conductive inks 2015-2030, revenues (million $), by ink types……………………………… 148
  • Figure 77. Touchcode technology……………………………………………………………………………………………………….. 219
  • Figure 78. Smart label……………………………………………………………………………………………………………………… 229
  • Figure 79. Antelope Suit…………………………………………………………………………………………………………………… 238
  • Figure 80: Flexible display…………………………………………………………………………………………………………………. 239
  • Figure 81. Stretchable transistor…………………………………………………………………………………………………………. 240
  • Figure 82. Artificial skin prototype for gesture recognition…………………………………………………………………………. 242
  • Figure 83: CNT stretchable Resin Film…………………………………………………………………………………………………. 244
  • Figure 84: Bending durability of Ag nanowires……………………………………………………………………………………….. 249
  • Figure 85: NFC computer chip……………………………………………………………………………………………………………. 250
  • Figure 86: NFC translucent diffuser schematic………………………………………………………………………………………. 251
  • Figure 87: Softceptor sensor……………………………………………………………………………………………………………… 252
  • Figure 88: Media Arm Controller…………………………………………………………………………………………………………. 253
  • Figure 89: Flexible textile pressure sensor……………………………………………………………………………………………. 253
  • Figure 90: Flexible sensor…………………………………………………………………………………………………………………. 254
  • Figure 91: <hitoe> nanofiber conductive shirt original design(top) and current design (bottom)…………………………. 255
  • Figure 92: Garment-based printable electrodes……………………………………………………………………………………… 256
  • Figure 93: Wearable gas sensor…………………………………………………………………………………………………………. 257
  • Figure 94: BeBop Sensors Marcel Modular Data Gloves………………………………………………………………………….. 258
  • Figure 95: Smart Helmet Sensor System……………………………………………………………………………………………… 258
  • Figure 96: Torso and Extremities Protection (TEP) system……………………………………………………………………….. 259
  • Figure 97: Global market for wearable electronics, 2015-2030, by application, billions $………………………………….. 260
  • Figure 98: Global transparent conductive electrodes market forecast by materials type, 2012-2030, millions $…….. 261
  • Figure 99: BITalino systems………………………………………………………………………………………………………………. 279
  • Figure 100: Connected human body……………………………………………………………………………………………………. 311
  • Figure 101: Flexible, lightweight temperature sensor……………………………………………………………………………….. 312
  • Figure 102: Prototype ECG sensor patch……………………………………………………………………………………………… 315
  • Figure 103: Graphene-based E-skin patch……………………………………………………………………………………………. 316
  • Figure 104: Wearable bio-fluid monitoring system for monitoring of hydration……………………………………………….. 317
  • Figure 105: Smart mouth guard………………………………………………………………………………………………………….. 318
  • Figure 106: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs…………. 319
  • Figure 107: Graphene medical patch…………………………………………………………………………………………………… 319
  • Figure 108: Wearable wireless thermometer…………………………………………………………………………………………. 320
  • Figure 109: Baby monitor………………………………………………………………………………………………………………….. 320
  • Figure 110: Nanowire skin hydration patch……………………………………………………………………………………………. 321
  • Figure 111: Wearable sweat sensor…………………………………………………………………………………………………….. 321
  • Figure 112: Wearable sweat sensor…………………………………………………………………………………………………….. 322
  • Figure 113: My UV Patch………………………………………………………………………………………………………………….. 323
  • Figure 114: Overview layers of L’Oreal skin patch………………………………………………………………………………….. 323
  • Figure 115: Global medical and healthcare smart textiles and wearables market, 2015-2030, billions $, by product. 326
  • Figure 116: Global medical and healthcare smart textiles and wearables market, 2015-2030, billions $, by product. 326
  • Figure 117. Carewear LED light patches………………………………………………………………………………………………. 334
  • Figure 118. In ear wearable sensor……………………………………………………………………………………………………… 336
  • Figure 119. DRYODES™ electrode…………………………………………………………………………………………………….. 347
  • Figure 120: Omniphobic-coated fabric…………………………………………………………………………………………………. 365
  • Figure 121: Conductive yarns…………………………………………………………………………………………………………….. 371
  • Figure 122: Work out shirt incorporating ECG sensors, flexible lights and heating elements…………………………….. 374
  • Figure 123: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper……………………………………………………………………………….. 375
  • Figure 124: Global electronic textiles market 2015-2030, revenues (billions USD)…………………………………………. 376
  • Figure 125 Global smart clothing, interactive fabrics and apparel sales by market segment……………………………… 377
  • Figure 126: Energy harvesting textile…………………………………………………………………………………………………… 402
  • Figure 127: StretchSense Energy Harvesting Kit……………………………………………………………………………………. 402
  • Figure 128: Hexagonal battery…………………………………………………………………………………………………………… 403
  • Figure 129: Printed 1.5V battery…………………………………………………………………………………………………………. 405
  • Figure 130. Schematic of the structure of stretchable LIBs,………………………………………………………………………. 406
  • Figure 131: Energy densities and specific energy of rechargeable batteries…………………………………………………. 409
  • Figure 132: Stretchable graphene supercapacitor…………………………………………………………………………………… 410
  • Figure 133. Origami-like silicon solar cells…………………………………………………………………………………………….. 413
  • Figure 134: Demand for thin film, flexible and printed batteries, by market……………………………………………………. 417
  • Figure 135: Global thin film, flexible and printed batteries market 2015-2030, revenues (billions USD)……………….. 418
  • Figure 136. Transparent 3D touch control with LED lights and LED matrix…………………………………………………… 421
  • Figure 137: LG Display LG Display 77-inch flexible transparent OLED display………………………………………………. 437
  • Figure 138: Thin film transistor incorporating CNTs…………………………………………………………………………………. 440
  • Figure 139:  Carbon nanotubes flexible, rechargeable yarn batteries incorporated into flexible, rechargeable yarn batteries………………………………………………………………………………………………………………………………….. 442
  • Figure 140: Flexible LCD………………………………………………………………………………………………………………….. 442
  • Figure 141: “Full ActiveTM Flex”…………………………………………………………………………………………………………. 443
  • Figure 142: FOLED schematic…………………………………………………………………………………………………………… 445
  • Figure 143. LG Signature’s OLED TV R……………………………………………………………………………………………….. 445
  • Figure 144: Foldable display……………………………………………………………………………………………………………… 446
  • Figure 145: Stretchable AMOLED……………………………………………………………………………………………………….. 446
  • Figure 146: LGD 12.3” FHD Automotive OLED………………………………………………………………………………………. 447
  • Figure 147. LG rollable smartphone concept…………………………………………………………………………………………. 448
  • Figure 148. Motorola Razr foldable smartphone…………………………………………………………………………………….. 448
  • Figure 149: LECTUM® display…………………………………………………………………………………………………………… 451
  • Figure 150: LG OLED flexible lighting panel………………………………………………………………………………………….. 454
  • Figure 151: Flexible OLED incorporated into automotive headlight……………………………………………………………… 455
  • Figure 152: Flexible & stretchable LEDs based on quantum dots……………………………………………………………….. 455
  • Figure 153: Global market for flexible displays, 2015-2030 (billion $)………………………………………………………….. 457