Published September 2023 | 2,101 pages, 343 tables, 560 figures
The demand for renewable and sustainable alternatives to fossil-fuel based chemicals and materials is experiencing rapid growth. The use of renewable and sustainable materials in construction, automotive, energy, textiles and others sectors can create new markets for bio-based products, as well as significantly reduce emissions, manufacturing energy requirements, manufacturing costs and waste. Key market drivers include rising corporate and government commitments to sustainability, regulations favouring renewables, and shifting consumer preferences.
The 2,101 page report provides a comprehensive analysis of the global market for bio-based, CO2-utilization, and chemically recycled materials. It profiles over 1,200 companies developing innovative technologies and products in these sectors. Contents include:
- In-depth analysis of bio-based feedstocks including plant-based sources (starch, sugar crops, lignocellulose, oils), waste streams (food, agricultural, forestry, municipal), and microbial & mineral sources.
- In-depth analysis of bio-based polymers, plastics, fuels, natural fibers, lignin, and sustainable coatings and paints. Market sizes, production capacities, volume trends and forecasts to 2034.
- Review of latest technologies and market opportunities in carbon capture, utilization and storage (CCUS). Barriers, policies, projects, product markets including CO2-based fuels, minerals, etc.
- Overview of advanced chemical recycling processes such as pyrolysis, gasification, depolymerization, etc. Plastics market drivers, industry developments, technology analysis, and company profiles.
- Companies profiled include NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH, Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio, B’ZEOS, Ecovative, Notpla, Smartfiber, Keel Labs, MycoWorks, Algiecel, Aspiring Materials, Cambridge Carbon Capture, Carbon Engineering Ltd., Captura, Carbyon BV, CarbonCure Technologies Inc., CarbonOrO, Carbon Collect, Climeworks, Dimensional Energy, Dioxycle, Ebb Carbon, enaDyne, Fortera Corporation, Global Thermostat, Heirloom Carbon Technologies, High Hopes Labs, LanzaTech, Liquid Wind AB, Lithos, Living Carbon, Mars Materials, Mercurius Biorefining, Mission Zero Technologies, OXCUU, Oxylum, Paebbl, Prometheus Fuels, RepAir, Sunfire GmbH, Sustaera, Svante, Travertine Technologies, Verdox, Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastic Energy, Polystyvert, Pyrowave, ReVital Polymers and SABIC.
The report underscores how bio-based, CO2-utilization, and chemical recycling technologies are essential for establishing a circular economy and sustainable climate future. It provides actionable intelligence for manufacturers, investors, and government agencies tracking these rapidly evolving markets.
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.
1 RESEARCH METHODOLOGY 93
2 BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET 95
- 2.1 BIOREFINERIES 95
- 2.2 BIO-BASED FEEDSTOCK AND LAND USE 97
- 2.3 PLANT-BASED 101
- 2.3.1 STARCH 101
- 2.3.1.1 Overview 101
- 2.3.1.2 Sources 102
- 2.3.1.3 Global production 103
- 2.3.1.4 Lysine 104
- 2.3.1.4.1 Sources 105
- 2.3.1.4.2 Applications 105
- 2.3.1.4.3 Global production 106
- 2.3.1.5 Glucose 108
- 2.3.1.5.1 HMDA 109
- 2.3.1.5.1.1 Overview 109
- 2.3.1.5.1.2 Sources 110
- 2.3.1.5.1.3 Applications 111
- 2.3.1.5.1.4 Global production 111
- 2.3.1.5.2 DN5 113
- 2.3.1.5.2.1 Overview 113
- 2.3.1.5.2.2 Sources 113
- 2.3.1.5.2.3 Applications 114
- 2.3.1.5.2.4 Global production 114
- 2.3.1.5.3 Sorbitol 116
- 2.3.1.5.3.1 Isosorbide 116
- 2.3.1.5.3.1.1 Overview 116
- 2.3.1.5.3.1.2 Sources 117
- 2.3.1.5.3.1.3 Applications 117
- 2.3.1.5.3.1.4 Global production 117
- 2.3.1.5.3.1 Isosorbide 116
- 2.3.1.5.4 Lactic acid 118
- 2.3.1.5.4.1 Overview 118
- 2.3.1.5.4.2 D-lactic acid 119
- 2.3.1.5.4.3 L-lactic acid 119
- 2.3.1.5.4.4 Lactide 120
- 2.3.1.5.5 Itaconic acid 124
- 2.3.1.5.5.1 Overview 124
- 2.3.1.5.5.2 Sources 124
- 2.3.1.5.5.3 Applications 124
- 2.3.1.5.5.4 Global production 125
- 2.3.1.5.6 3-HP 126
- 2.3.1.5.6.1 Overview 126
- 2.3.1.5.6.2 Sources 126
- 2.3.1.5.6.3 Applications 127
- 2.3.1.5.6.4 Global production 128
- 2.3.1.5.6.5 Acrylic acid 129
- 2.3.1.5.6.5.1 Overview 129
- 2.3.1.5.6.5.2 Applications 129
- 2.3.1.5.6.5.3 Global production 130
- 2.3.1.5.6.6 1,3-Propanediol (1,3-PDO) 131
- 2.3.1.5.6.6.1 Overview 131
- 2.3.1.5.6.6.2 Applications 131
- 2.3.1.5.6.6.3 Global production 132
- 2.3.1.5.7 Succinic Acid 134
- 2.3.1.5.7.1 Overview 134
- 2.3.1.5.7.2 Sources 135
- 2.3.1.5.7.3 Applications 135
- 2.3.1.5.7.4 Global production 136
- 2.3.1.5.7.5 1,4-Butanediol (1,4-BDO) 137
- 2.3.1.5.7.5.1 Overview 137
- 2.3.1.5.7.5.2 Applications 137
- 2.3.1.5.7.5.3 Global production 138
- 2.3.1.5.7.6 Tetrahydrofuran (THF) 140
- 2.3.1.5.7.6.1 Overview 140
- 2.3.1.5.7.6.2 Applications 141
- 2.3.1.5.7.6.3 Global production 141
- 2.3.1.5.8 Adipic acid 143
- 2.3.1.5.8.1 Overview 143
- 2.3.1.5.8.2 Caprolactame 145
- 2.3.1.5.8.2.1 Overview 145
- 2.3.1.5.8.2.2 Applications 145
- 2.3.1.5.8.2.3 Global production 146
- 2.3.1.5.9 Isobutanol 147
- 2.3.1.5.9.1 Overview 147
- 2.3.1.5.9.2 Sources 148
- 2.3.1.5.9.3 Applications 149
- 2.3.1.5.9.4 Global production 149
- 2.3.1.5.9.5 1,4-Butanediol 150
- 2.3.1.5.9.5.1 Overview 150
- 2.3.1.5.9.5.2 Applications 151
- 2.3.1.5.9.5.3 Global production 151
- 2.3.1.5.9.6 p-Xylene 153
- 2.3.1.5.9.6.1 Overview 153
- 2.3.1.5.9.6.2 Sources 154
- 2.3.1.5.9.6.3 Applications 154
- 2.3.1.5.9.6.4 Global production 155
- 2.3.1.5.9.6.5 Terephthalic acid 156
- 2.3.1.5.9.6.6 Overview 156
- 2.3.1.5.10 1,3 Proppanediol 157
- 2.3.1.5.10.1 Overview 157
- 2.3.1.5.10.2 Sources 158
- 2.3.1.5.10.3 Applications 158
- 2.3.1.5.10.4 Global production 158
- 2.3.1.5.11 MEG 159
- 2.3.1.5.11.1 Overview 159
- 2.3.1.5.11.2 Sources 160
- 2.3.1.5.11.3 Applications 160
- 2.3.1.5.11.4 Global production 161
- 2.3.1.5.12 Ethanol 164
- 2.3.1.5.12.1 Overview 164
- 2.3.1.5.12.2 Sources 164
- 2.3.1.5.12.3 Applications 166
- 2.3.1.5.12.4 Global production 167
- 2.3.1.5.12.5 Ethylene 167
- 2.3.1.5.12.5.1 Overview 168
- 2.3.1.5.12.5.2 Applications 168
- 2.3.1.5.12.5.3 Global production 168
- 2.3.1.5.12.5.4 Propylene 170
- 2.3.1.5.12.5.5 Vinyl chloride 173
- 2.3.1.5.12.6 Methly methacrylate 177
- 2.3.1.5.1 HMDA 109
- 2.3.2 SUGAR CROPS 179
- 2.3.2.1 Saccharose 180
- 2.3.2.1.1 Aniline 181
- 2.3.2.1.1.1 Overview 181
- 2.3.2.1.1.2 Applications 182
- 2.3.2.1.1.3 Global production 183
- 2.3.2.1.2 Fructose 185
- 2.3.2.1.2.1 Overview 185
- 2.3.2.1.2.2 Applications 186
- 2.3.2.1.2.3 Global production 187
- 2.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF) 188
- 2.3.2.1.2.4.1 Overview 188
- 2.3.2.1.2.4.2 Applications 189
- 2.3.2.1.2.4.3 Global production 190
- 2.3.2.1.2.5 5-Chloromethylfurfural (5-CMF) 192
- 2.3.2.1.2.5.1 Overview 192
- 2.3.2.1.2.5.2 Applications 193
- 2.3.2.1.2.5.3 Global production 194
- 2.3.2.1.2.6 Levulinic Acid 195
- 2.3.2.1.2.6.1 Overview 195
- 2.3.2.1.2.6.2 Applications 196
- 2.3.2.1.2.6.3 Global production 197
- 2.3.2.1.2.7 FDME 198
- 2.3.2.1.2.7.1 Overview 198
- 2.3.2.1.2.7.2 Applications 198
- 2.3.2.1.2.7.3 Global production 200
- 2.3.2.1.2.8 2,5-FDCA 202
- 2.3.2.1.2.8.1 Overview 202
- 2.3.2.1.2.8.2 Applications 203
- 2.3.2.1.2.8.3 Global production 204
- 2.3.3 LIGNOCELLULOSIC BIOMASS 206
- 2.3.3.1 Levoglucosenone 206
- 2.3.3.1.1 Overview 206
- 2.3.3.1.2 Applications 206
- 2.3.3.1.3 Global production 207
- 2.3.3.2 Hemicellulose 208
- 2.3.3.2.1 Overview 208
- 2.3.3.2.2 Biochemicals from hemicellulose 208
- 2.3.3.2.3 Global production 209
- 2.3.3.2.4 Furfural 210
- 2.3.3.2.4.1 Overview 210
- 2.3.3.2.4.2 Applications 211
- 2.3.3.2.4.3 Global production 211
- 2.3.3.2.4.4 Furfuyl alcohol 212
- 2.3.3.2.4.4.1 Overview 212
- 2.3.3.2.4.4.2 Applications 213
- 2.3.3.2.4.4.3 Global production 213
- 2.3.3.3 Lignin 215
- 2.3.3.3.1 Overview 215
- 2.3.3.3.2 Sources 216
- 2.3.3.3.3 Applications 217
- 2.3.3.3.3.1 Aromatic compounds 217
- 2.3.3.3.3.1.1 Benzene, toluene and xylene 218
- 2.3.3.3.3.1.2 Phenol and phenolic resins 218
- 2.3.3.3.3.1.3 Vanillin 219
- 2.3.3.3.3.2 Polymers 220
- 2.3.3.3.3.1 Aromatic compounds 217
- 2.3.3.3.4 Global production 221
- 2.3.3.1 Levoglucosenone 206
- 2.3.4 PLANT OILS 222
- 2.3.4.1 Overview 222
- 2.3.4.2 Glycerol 223
- 2.3.4.2.1 Overview 223
- 2.3.4.2.2 Applications 224
- 2.3.4.2.3 Global production 224
- 2.3.4.2.4 MPG 225
- 2.3.4.2.4.1 Overview 225
- 2.3.4.2.4.2 Applications 225
- 2.3.4.2.4.3 Global production 225
- 2.3.4.2.5 ECH 227
- 2.3.4.2.5.1 Overview 227
- 2.3.4.2.5.2 Applications 228
- 2.3.4.2.5.3 Global production 230
- 2.3.4.3 Fatty acids 231
- 2.3.4.3.1 Overview 231
- 2.3.4.3.2 Applications 232
- 2.3.4.3.3 Global production 233
- 2.3.4.3.4 PHA 234
- 2.3.4.3.4.1 Overview 234
- 2.3.4.3.4.2 Applications 234
- 2.3.4.3.4.3 Global production 235
- 2.3.4.4 Castor oil 236
- 2.3.4.4.1 Overview 236
- 2.3.4.4.2 Sebacic acid 236
- 2.3.4.4.2.1 Overview 236
- 2.3.4.4.2.2 Applications 239
- 2.3.4.4.2.3 Global production 240
- 2.3.4.4.3 11-Aminoundecanoic acid (11-AA) 241
- 2.3.4.4.3.1 Overview 242
- 2.3.4.4.3.2 Applications 242
- 2.3.4.4.3.3 Global production 243
- 2.3.4.5 Dodecanedioic acid (DDDA) 244
- 2.3.4.5.1 Overview 244
- 2.3.4.5.2 Applications 245
- 2.3.4.5.3 Global production 245
- 2.3.4.6 Epichlorohydrin (ECH) 246
- 2.3.4.6.1 Overview 246
- 2.3.4.6.2 Applications 247
- 2.3.4.6.3 Global production 248
- 2.3.4.7 Pentamethylene diisocyanate 249
- 2.3.4.7.1 Overview 250
- 2.3.4.7.2 Applications 250
- 2.3.4.7.3 Global production 251
- 2.3.5 NON-EDIBIBLE MILK 252
- 2.3.5.1 Casein 252
- 2.3.5.1.1 Overview 252
- 2.3.5.1.2 Applications 253
- 2.3.5.1.3 Global production 254
- 2.3.5.1 Casein 252
- 2.4 WASTE 255
- 2.4.1 Food waste 255
- 2.4.1.1 Overview 255
- 2.4.1.2 Products and applications 258
- 2.4.1.3 Global production 258
- 2.4.2 Agricultural waste 260
- 2.4.2.1 Overview 260
- 2.4.2.2 Products and applications 261
- 2.4.2.3 Global production 262
- 2.4.3 Forestry waste 263
- 2.4.3.1 Overview 263
- 2.4.3.2 Products and applications 264
- 2.4.3.3 Global production 265
- 2.4.4 Aquaculture/fishing waste 267
- 2.4.4.1 Overview 267
- 2.4.4.2 Products and applications 268
- 2.4.4.3 Global production 269
- 2.4.5 Municipal solid waste 272
- 2.4.5.1 Overview 272
- 2.4.5.2 Products and applications 273
- 2.4.5.3 Global production 274
- 2.4.6 Industrial waste 276
- 2.4.6.1 Overview 276
- 2.4.6.2 Products and applications 277
- 2.4.6.3 Global production 277
- 2.4.6.4 Glycerol 279
- 2.4.6.4.1 Overview 279
- 2.4.6.4.2 Products and applications 279
- 2.4.6.4.3 Global production 280
- 2.4.7 Waste oils 282
- 2.4.7.1 Overview 282
- 2.4.7.2 Products and applications 283
- 2.4.7.3 Global production 283
- 2.4.7.4 Naphtha 285
- 2.4.7.4.1 Overview 285
- 2.4.1 Food waste 255
- 2.5 MICROBIAL & MINERAL SOURCES 285
- 2.5.1 Global production 286
- 2.5.2 Microalgae 287
- 2.5.2.1 Overview 287
- 2.5.2.2 Products and applications 288
- 2.5.3 Macroalgae 288
- 2.5.3.1 Overview 289
- 2.5.3.2 Products and applications 289
- 2.5.4 Methane hydrates 290
- 2.5.4.1 Overview 290
- 2.5.4.2 Products and applications 292
- 2.5.5 Mineral sources 293
- 2.5.5.1 Overview 293
- 2.5.5.2 Products and applications 295
- 2.6 GASEOUS 296
- 2.6.1 Biogas 296
- 2.6.1.1 Overview 296
- 2.6.1.2 Products and applications 297
- 2.6.1.3 Global production 298
- 2.6.2 Syngas 299
- 2.6.2.1 Products and applications 300
- 2.6.2.2 Global production 301
- 2.6.3 Off gases - fermentation CO2, CO 303
- 2.6.3.1 Overview 306
- 2.6.3.2 Products and applications 307
- 2.6.1 Biogas 296
- 2.7 COMPANY PROFILES 308 (100 company profiles)
3 BIO-BASED PLASTICS AND POLYMERS MARKET 391
- 3.1 BIO-BASED OR RENEWABLE PLASTICS 391
- 3.1.1 Drop-in bio-based plastics 392
- 3.1.2 Novel bio-based plastics 393
- 3.2 BIODEGRADABLE AND COMPOSTABLE PLASTICS 394
- 3.2.1 Biodegradability 394
- 3.2.2 Compostability 395
- 3.3 TYPES 396
- 3.4 KEY MARKET PLAYERS 398
- 3.5 SYNTHETIC BIO-BASED POLYMERS 399
- 3.5.1 Polylactic acid (Bio-PLA) 399
- 3.5.1.1 Market analysis 399
- 3.5.1.2 Production 401
- 3.5.1.3 Producers and production capacities, current and planned 401
- 3.5.1.3.1 Lactic acid producers and production capacities 401
- 3.5.1.3.2 PLA producers and production capacities 402
- 3.5.1.3.3 Polylactic acid (Bio-PLA) production capacities 2019-2034 (1,000 tons) 403
- 3.5.2 Polyethylene terephthalate (Bio-PET) 404
- 3.5.2.1 Market analysis 404
- 3.5.2.2 Producers and production capacities 405
- 3.5.2.3 Polyethylene terephthalate (Bio-PET) production capacities 2019-2034 (1,000 tons) 406
- 3.5.3 Polytrimethylene terephthalate (Bio-PTT) 407
- 3.5.3.1 Market analysis 407
- 3.5.3.2 Producers and production capacities 407
- 3.5.3.3 Polytrimethylene terephthalate (PTT) production capacities 2019-2034 (1,000 tons) 408
- 3.5.4 Polyethylene furanoate (Bio-PEF) 409
- 3.5.4.1 Market analysis 409
- 3.5.4.2 Comparative properties to PET 410
- 3.5.4.3 Producers and production capacities 411
- 3.5.4.3.1 FDCA and PEF producers and production capacities 411
- 3.5.4.3.2 Polyethylene furanoate (Bio-PEF) production capacities 2019-2034 (1,000 tons). 412
- 3.5.5 Polyamides (Bio-PA) 413
- 3.5.5.1 Market analysis 414
- 3.5.5.2 Producers and production capacities 415
- 3.5.5.3 Polyamides (Bio-PA) production capacities 2019-2034 (1,000 tons) 415
- 3.5.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 416
- 3.5.6.1 Market analysis 416
- 3.5.6.2 Producers and production capacities 417
- 3.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2034 (1,000 tons) 418
- 3.5.7 Polybutylene succinate (PBS) and copolymers 419
- 3.5.7.1 Market analysis 419
- 3.5.7.2 Producers and production capacities 420
- 3.5.7.3 Polybutylene succinate (PBS) production capacities 2019-2034 (1,000 tons) 420
- 3.5.8 Polyethylene (Bio-PE) 421
- 3.5.8.1 Market analysis 421
- 3.5.8.2 Producers and production capacities 422
- 3.5.8.3 Polyethylene (Bio-PE) production capacities 2019-2034 (1,000 tons). 422
- 3.5.9 Polypropylene (Bio-PP) 423
- 3.5.9.1 Market analysis 424
- 3.5.9.2 Producers and production capacities 424
- 3.5.9.3 Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tons) 424
- 3.5.1 Polylactic acid (Bio-PLA) 399
- 3.6 NATURAL BIO-BASED POLYMERS 426
- 3.6.1 Polyhydroxyalkanoates (PHA) 426
- 3.6.1.1 Technology description 426
- 3.6.1.2 Types 428
- 3.6.1.2.1 PHB 430
- 3.6.1.2.2 PHBV 431
- 3.6.1.3 Synthesis and production processes 432
- 3.6.1.4 Market analysis 435
- 3.6.1.5 Commercially available PHAs 436
- 3.6.1.6 Markets for PHAs 437
- 3.6.1.6.1 Packaging 439
- 3.6.1.6.2 Cosmetics 440
- 3.6.1.6.2.1 PHA microspheres 440
- 3.6.1.6.3 Medical 441
- 3.6.1.6.3.1 Tissue engineering 441
- 3.6.1.6.3.2 Drug delivery 441
- 3.6.1.6.4 Agriculture 441
- 3.6.1.6.4.1 Mulch film 441
- 3.6.1.6.4.2 Grow bags 441
- 3.6.1.7 Producers and production capacities 442
- 3.6.1.8 PHA production capacities 2019-2034 (1,000 tons) 444
- 3.6.2 Cellulose 445
- 3.6.2.1 Microfibrillated cellulose (MFC) 445
- 3.6.2.1.1 Market analysis 445
- 3.6.2.1.2 Producers and production capacities 446
- 3.6.2.2 Nanocellulose 446
- 3.6.2.2.1 Cellulose nanocrystals 446
- 3.6.2.2.1.1 Synthesis 447
- 3.6.2.2.1.2 Properties 449
- 3.6.2.2.1.3 Production 450
- 3.6.2.2.1.4 Applications 450
- 3.6.2.2.1.5 Market analysis 452
- 3.6.2.2.1.6 Producers and production capacities 453
- 3.6.2.2.2 Cellulose nanofibers 454
- 3.6.2.2.2.1 Applications 454
- 3.6.2.2.2.2 Market analysis 455
- 3.6.2.2.2.3 Producers and production capacities 457
- 3.6.2.2.3 Bacterial Nanocellulose (BNC) 458
- 3.6.2.2.3.1 Production 458
- 3.6.2.2.3.2 Applications 461
- 3.6.2.2.1 Cellulose nanocrystals 446
- 3.6.2.1 Microfibrillated cellulose (MFC) 445
- 3.6.3 Protein-based bioplastics 462
- 3.6.3.1 Types, applications and producers 463
- 3.6.4 Algal and fungal 464
- 3.6.4.1 Algal 464
- 3.6.4.1.1 Advantages 464
- 3.6.4.1.2 Production 466
- 3.6.4.1.3 Producers 466
- 3.6.4.2 Mycelium 467
- 3.6.4.2.1 Properties 467
- 3.6.4.2.2 Applications 468
- 3.6.4.2.3 Commercialization 469
- 3.6.4.1 Algal 464
- 3.6.5 Chitosan 470
- 3.6.5.1 Technology description 470
- 3.6.1 Polyhydroxyalkanoates (PHA) 426
- 3.7 PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION 471
- 3.7.1 North America 472
- 3.7.2 Europe 473
- 3.7.3 Asia-Pacific 473
- 3.7.3.1 China 473
- 3.7.3.2 Japan 474
- 3.7.3.3 Thailand 474
- 3.7.3.4 Indonesia 474
- 3.7.4 Latin America 475
- 3.8 MARKET SEGMENTATION OF BIOPLASTICS & BIOPOLYMERS 476
- 3.8.1 Packaging 477
- 3.8.1.1 Processes for bioplastics in packaging 477
- 3.8.1.2 Applications 478
- 3.8.1.3 Flexible packaging 479
- 3.8.1.3.1 Production volumes 2019-2034 481
- 3.8.1.4 Rigid packaging 481
- 3.8.1.4.1 Production volumes 2019-2034 483
- 3.8.2 Consumer products 484
- 3.8.2.1 Applications 484
- 3.8.3 Automotive 485
- 3.8.3.1 Applications 485
- 3.8.3.2 Production capacities 485
- 3.8.4 Building & construction 486
- 3.8.4.1 Applications 486
- 3.8.4.2 Production capacities 486
- 3.8.5 Textiles 487
- 3.8.5.1 Apparel 487
- 3.8.5.2 Footwear 488
- 3.8.5.3 Medical textiles 490
- 3.8.5.4 Production capacities 490
- 3.8.6 Electronics 491
- 3.8.6.1 Applications 491
- 3.8.6.2 Production capacities 491
- 3.8.7 Agriculture and horticulture 492
- 3.8.7.1 Production capacities 493
- 3.8.1 Packaging 477
- 3.9 NATURAL FIBERS 494
- 3.9.1 Manufacturing method, matrix materials and applications of natural fibers 497
- 3.9.2 Advantages of natural fibers 499
- 3.9.3 Commercially available next-gen natural fiber products 500
- 3.9.4 Market drivers for next-gen natural fibers 503
- 3.9.5 Challenges 504
- 3.9.6 Plants (cellulose, lignocellulose) 505
- 3.9.6.1 Seed fibers 505
- 3.9.6.1.1 Cotton 505
- 3.9.6.1.1.1 Production volumes 2018-2034 506
- 3.9.6.1.2 Kapok 506
- 3.9.6.1.2.1 Production volumes 2018-2034 507
- 3.9.6.1.3 Luffa 508
- 3.9.6.1.1 Cotton 505
- 3.9.6.2 Bast fibers 509
- 3.9.6.2.1 Jute 509
- 3.9.6.2.2 Production volumes 2018-2034 510
- 3.9.6.2.2.1 Hemp 511
- 3.9.6.2.2.2 Production volumes 2018-2034 512
- 3.9.6.2.3 Flax 512
- 3.9.6.2.3.1 Production volumes 2018-2034 513
- 3.9.6.2.4 Ramie 514
- 3.9.6.2.4.1 Production volumes 2018-2034 514
- 3.9.6.2.5 Kenaf 515
- 3.9.6.2.5.1 Production volumes 2018-2034 516
- 3.9.6.2.1 Jute 509
- 3.9.6.3 Leaf fibers 517
- 3.9.6.3.1 Sisal 517
- 3.9.6.3.1.1 Production volumes 2018-2034 518
- 3.9.6.3.2 Abaca 518
- 3.9.6.3.2.1 Production volumes 2018-2034 519
- 3.9.6.3.1 Sisal 517
- 3.9.6.4 Fruit fibers 520
- 3.9.6.4.1 Coir 520
- 3.9.6.4.1.1 Production volumes 2018-2034 520
- 3.9.6.4.2 Banana 521
- 3.9.6.4.2.1 Production volumes 2018-2034 522
- 3.9.6.4.3 Pineapple 523
- 3.9.6.4.1 Coir 520
- 3.9.6.5 Stalk fibers from agricultural residues 524
- 3.9.6.5.1 Rice fiber 524
- 3.9.6.5.2 Corn 525
- 3.9.6.6 Cane, grasses and reed 526
- 3.9.6.6.1 Switch grass 526
- 3.9.6.6.2 Sugarcane (agricultural residues) 526
- 3.9.6.6.3 Bamboo 527
- 3.9.6.6.3.1 Production volumes 2018-2034 528
- 3.9.6.6.4 Fresh grass (green biorefinery) 528
- 3.9.6.7 Modified natural polymers 529
- 3.9.6.7.1 Mycelium 529
- 3.9.6.7.2 Chitosan 531
- 3.9.6.7.3 Alginate 532
- 3.9.6.1 Seed fibers 505
- 3.9.7 Animal (fibrous protein) 534
- 3.9.7.1 Wool 534
- 3.9.7.1.1 Alternative wool materials 535
- 3.9.7.1.2 Producers 535
- 3.9.7.2 Silk fiber 535
- 3.9.7.2.1 Alternative silk materials 536
- 3.9.7.2.1.1 Producers 537
- 3.9.7.2.1 Alternative silk materials 536
- 3.9.7.3 Leather 537
- 3.9.7.3.1 Alternative leather materials 538
- 3.9.7.3.1.1 Producers 538
- 3.9.7.3.1 Alternative leather materials 538
- 3.9.7.4 Fur 540
- 3.9.7.4.1 Producers 540
- 3.9.7.5 Down 540
- 3.9.7.5.1 Alternative down materials 540
- 3.9.7.5.1.1 Producers 540
- 3.9.7.5.1 Alternative down materials 540
- 3.9.7.1 Wool 534
- 3.9.8 Markets for natural fibers 541
- 3.9.8.1 Composites 541
- 3.9.8.2 Applications 541
- 3.9.8.3 Natural fiber injection moulding compounds 543
- 3.9.8.3.1 Properties 543
- 3.9.8.3.2 Applications 543
- 3.9.8.4 Non-woven natural fiber mat composites 543
- 3.9.8.4.1 Automotive 543
- 3.9.8.4.2 Applications 544
- 3.9.8.5 Aligned natural fiber-reinforced composites 544
- 3.9.8.6 Natural fiber biobased polymer compounds 545
- 3.9.8.7 Natural fiber biobased polymer non-woven mats 546
- 3.9.8.7.1 Flax 546
- 3.9.8.7.2 Kenaf 546
- 3.9.8.8 Natural fiber thermoset bioresin composites 546
- 3.9.8.9 Aerospace 547
- 3.9.8.9.1 Market overview 547
- 3.9.8.10 Automotive 547
- 3.9.8.10.1 Market overview 547
- 3.9.8.10.2 Applications of natural fibers 552
- 3.9.8.11 Building/construction 553
- 3.9.8.11.1 Market overview 553
- 3.9.8.11.2 Applications of natural fibers 553
- 3.9.8.12 Sports and leisure 554
- 3.9.8.12.1 Market overview 554
- 3.9.8.13 Textiles 555
- 3.9.8.13.1 Market overview 555
- 3.9.8.13.2 Consumer apparel 556
- 3.9.8.13.3 Geotextiles 556
- 3.9.8.14 Packaging 557
- 3.9.8.14.1 Market overview 557
- 3.9.9 Global production of natural fibers 560
- 3.9.9.1 Overall global fibers market 560
- 3.9.9.2 Plant-based fiber production 562
- 3.9.9.3 Animal-based natural fiber production 563
- 3.10 LIGNIN 564
- 3.10.1 Introduction 564
- 3.10.1.1 What is lignin? 564
- 3.10.1.1.1 Lignin structure 565
- 3.10.1.2 Types of lignin 566
- 3.10.1.2.1 Sulfur containing lignin 568
- 3.10.1.2.2 Sulfur-free lignin from biorefinery process 568
- 3.10.1.3 Properties 569
- 3.10.1.4 The lignocellulose biorefinery 571
- 3.10.1.5 Markets and applications 572
- 3.10.1.6 Challenges for using lignin 574
- 3.10.1.1 What is lignin? 564
- 3.10.2 Lignin production processes 574
- 3.10.2.1 Lignosulphonates 576
- 3.10.2.2 Kraft Lignin 576
- 3.10.2.2.1 LignoBoost process 577
- 3.10.2.2.2 LignoForce method 577
- 3.10.2.2.3 Sequential Liquid Lignin Recovery and Purification 578
- 3.10.2.2.4 A-Recovery+ 579
- 3.10.2.3 Soda lignin 580
- 3.10.2.4 Biorefinery lignin 580
- 3.10.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes 581
- 3.10.2.5 Organosolv lignins 583
- 3.10.2.6 Hydrolytic lignin 584
- 3.10.3 Markets for lignin 585
- 3.10.3.1 Market drivers and trends for lignin 585
- 3.10.3.2 Production capacities 586
- 3.10.3.2.1 Technical lignin availability (dry ton/y) 586
- 3.10.3.2.2 Biomass conversion (Biorefinery) 587
- 3.10.3.3 Estimated consumption of lignin 587
- 3.10.3.4 Prices 589
- 3.10.3.5 Heat and power energy 589
- 3.10.3.6 Pyrolysis and syngas 589
- 3.10.3.7 Aromatic compounds 589
- 3.10.3.7.1 Benzene, toluene and xylene 590
- 3.10.3.7.2 Phenol and phenolic resins 590
- 3.10.3.7.3 Vanillin 591
- 3.10.3.8 Plastics and polymers 591
- 3.10.3.9 Hydrogels 592
- 3.10.3.10 Carbon materials 593
- 3.10.3.10.1 Carbon black 593
- 3.10.3.10.2 Activated carbons 593
- 3.10.3.10.3 Carbon fiber 594
- 3.10.3.11 Concrete 595
- 3.10.3.12 Rubber 596
- 3.10.3.13 Biofuels 596
- 3.10.3.14 Bitumen and Asphalt 596
- 3.10.3.15 Oil and gas 597
- 3.10.3.16 Energy storage 598
- 3.10.3.16.1 Supercapacitors 598
- 3.10.3.16.2 Anodes for lithium-ion batteries 598
- 3.10.3.16.3 Gel electrolytes for lithium-ion batteries 599
- 3.10.3.16.4 Binders for lithium-ion batteries 599
- 3.10.3.16.5 Cathodes for lithium-ion batteries 599
- 3.10.3.16.6 Sodium-ion batteries 600
- 3.10.3.17 Binders, emulsifiers and dispersants 600
- 3.10.3.18 Chelating agents 602
- 3.10.3.19 Ceramics 603
- 3.10.3.20 Automotive interiors 603
- 3.10.3.21 Fire retardants 604
- 3.10.3.22 Antioxidants 604
- 3.10.3.23 Lubricants 604
- 3.10.3.24 Dust control 605
- 3.10.1 Introduction 564
- 3.11 BIOPLASTICS AND BIOPOLYMERS COMPANY PROFILES 606 (503 company profiles)
4 BIO-BASED FUELS MARKET 1028
- 4.1 Comparison to fossil fuels 1028
- 4.2 Role in the circular economy 1028
- 4.3 Market drivers 1029
- 4.4 Market challenges 1030
- 4.5 Liquid biofuels market 2020-2034, by type and production 1031
- 4.6 SWOT analysis: Biofuels market 1033
- 4.7 Comparison of biofuel costs 2023, by type 1035
- 4.8 Types 1036
- 4.8.1 Solid Biofuels 1036
- 4.8.2 Liquid Biofuels 1037
- 4.8.3 Gaseous Biofuels 1037
- 4.8.4 Conventional Biofuels 1038
- 4.8.5 Advanced Biofuels 1039
- 4.9 Feedstocks 1040
- 4.9.1 First-generation (1-G) 1042
- 4.9.2 Second-generation (2-G) 1043
- 4.9.2.1 Lignocellulosic wastes and residues 1044
- 4.9.2.2 Biorefinery lignin 1045
- 4.9.3 Third-generation (3-G) 1049
- 4.9.3.1 Algal biofuels 1049
- 4.9.3.1.1 Properties 1050
- 4.9.3.1.2 Advantages 1051
- 4.9.3.1 Algal biofuels 1049
- 4.9.4 Fourth-generation (4-G) 1052
- 4.9.5 Advantages and disadvantages, by generation 1052
- 4.9.6 Energy crops 1054
- 4.9.6.1 Feedstocks 1054
- 4.9.6.2 SWOT analysis 1055
- 4.9.7 Agricultural residues 1056
- 4.9.7.1 Feedstocks 1056
- 4.9.7.2 SWOT analysis 1056
- 4.9.8 Manure, sewage sludge and organic waste 1058
- 4.9.8.1 Processing pathways 1058
- 4.9.8.2 SWOT analysis 1058
- 4.9.9 Forestry and wood waste 1060
- 4.9.9.1 Feedstocks 1060
- 4.9.9.2 SWOT analysis 1060
- 4.9.10 Feedstock costs 1062
- 4.10 HYDROCARBON BIOFUELS 1062
- 4.10.1 Biodiesel 1062
- 4.10.1.1 Biodiesel by generation 1063
- 4.10.1.2 SWOT analysis 1064
- 4.10.1.3 Production of biodiesel and other biofuels 1066
- 4.10.1.3.1 Pyrolysis of biomass 1067
- 4.10.1.3.2 Vegetable oil transesterification 1070
- 4.10.1.3.3 Vegetable oil hydrogenation (HVO) 1071
- 4.10.1.3.3.1 Production process 1071
- 4.10.1.3.4 Biodiesel from tall oil 1073
- 4.10.1.3.5 Fischer-Tropsch BioDiesel 1073
- 4.10.1.3.6 Hydrothermal liquefaction of biomass 1075
- 4.10.1.3.7 CO2 capture and Fischer-Tropsch (FT) 1076
- 4.10.1.3.8 Dymethyl ether (DME) 1076
- 4.10.1.4 Prices 1076
- 4.10.1.5 Global production and consumption 1077
- 4.10.2 Renewable diesel 1080
- 4.10.2.1 Production 1081
- 4.10.2.2 SWOT analysis 1081
- 4.10.2.3 Global consumption 1083
- 4.10.2.4 Prices 1085
- 4.10.3 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel) 1086
- 4.10.3.1 Description 1086
- 4.10.3.2 SWOT analysis 1086
- 4.10.3.3 Global production and consumption 1087
- 4.10.3.4 Production pathways 1088
- 4.10.3.5 Prices 1090
- 4.10.3.6 Bio-aviation fuel production capacities 1091
- 4.10.3.7 Challenges 1091
- 4.10.3.8 Global consumption 1092
- 4.10.1 Biodiesel 1062
- 4.11 Bio-naphtha 1094
- 4.11.1 Overview 1094
- 4.12 ALCOHOL FUELS 1095
- 4.12.1 Biomethanol 1095
- 4.12.1.1 SWOT analysis 1095
- 4.12.1.2 Methanol-to gasoline technology 1096
- 4.12.1.2.1 Production processes 1097
- 4.12.1.2.1.1 Anaerobic digestion 1098
- 4.12.1.2.1.2 Biomass gasification 1099
- 4.12.1.2.1.3 Power to Methane 1100
- 4.12.1.2.1 Production processes 1097
- 4.12.2 Ethanol 1100
- 4.12.2.1 Technology description 1100
- 4.12.2.2 1G Bio-Ethanol 1101
- 4.12.2.3 SWOT analysis 1102
- 4.12.2.4 Ethanol to jet fuel technology 1103
- 4.12.2.5 Methanol from pulp & paper production 1103
- 4.12.2.6 Sulfite spent liquor fermentation 1104
- 4.12.2.7 Gasification 1104
- 4.12.2.7.1 Biomass gasification and syngas fermentation 1104
- 4.12.2.7.2 Biomass gasification and syngas thermochemical conversion 1105
- 4.12.2.8 CO2 capture and alcohol synthesis 1105
- 4.12.2.9 Biomass hydrolysis and fermentation 1106
- 4.12.2.9.1 Separate hydrolysis and fermentation 1106
- 4.12.2.9.2 Simultaneous saccharification and fermentation (SSF) 1107
- 4.12.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 1107
- 4.12.2.9.4 Simultaneous saccharification and co-fermentation (SSCF) 1107
- 4.12.2.9.5 Direct conversion (consolidated bioprocessing) (CBP) 1107
- 4.12.2.10 Global ethanol consumption 1108
- 4.12.3 Biobutanol 1110
- 4.12.3.1 Production 1112
- 4.12.3.2 Prices 1112
- 4.12.1 Biomethanol 1095
- 4.13 BIOMASS-BASED GAS 1113
- 4.13.1 Feedstocks 1115
- 4.13.1.1 Biomethane 1115
- 4.13.1.2 Production pathways 1117
- 4.13.1.2.1 Landfill gas recovery 1117
- 4.13.1.2.2 Anaerobic digestion 1118
- 4.13.1.2.3 Thermal gasification 1119
- 4.13.1.3 SWOT analysis 1120
- 4.13.1.4 Global production 1121
- 4.13.1.5 Prices 1121
- 4.13.1.5.1 Raw Biogas 1121
- 4.13.1.5.2 Upgraded Biomethane 1121
- 4.13.1.6 Bio-LNG 1121
- 4.13.1.6.1 Markets 1122
- 4.13.1.6.1.1 Trucks 1122
- 4.13.1.6.1.2 Marine 1122
- 4.13.1.6.2 Production 1122
- 4.13.1.6.3 Plants 1123
- 4.13.1.6.1 Markets 1122
- 4.13.1.7 bio-CNG (compressed natural gas derived from biogas) 1123
- 4.13.1.8 Carbon capture from biogas 1124
- 4.13.2 Biosyngas 1125
- 4.13.2.1 Production 1125
- 4.13.2.2 Prices 1126
- 4.13.3 Biohydrogen 1126
- 4.13.3.1 Description 1126
- 4.13.3.2 SWOT analysis 1127
- 4.13.3.3 Production of biohydrogen from biomass 1128
- 4.13.3.3.1 Biological Conversion Routes 1128
- 4.13.3.3.1.1 Bio-photochemical Reaction 1128
- 4.13.3.3.1.2 Fermentation and Anaerobic Digestion 1129
- 4.13.3.3.2 Thermochemical conversion routes 1129
- 4.13.3.3.2.1 Biomass Gasification 1129
- 4.13.3.3.2.2 Biomass Pyrolysis 1130
- 4.13.3.3.2.3 Biomethane Reforming 1130
- 4.13.3.3.1 Biological Conversion Routes 1128
- 4.13.3.4 Applications 1131
- 4.13.3.5 Prices 1131
- 4.13.4 Biochar in biogas production 1132
- 4.13.5 Bio-DME 1132
- 4.13.1 Feedstocks 1115
- 4.14 CHEMICAL RECYCLING FOR BIOFUELS 1133
- 4.14.1 Plastic pyrolysis 1133
- 4.14.1.1 Used tires pyrolysis 1134
- 4.14.1.2 Conversion to biofuel 1135
- 4.14.2 Co-pyrolysis of biomass and plastic wastes 1136
- 4.14.3 Gasification 1137
- 4.14.3.1 Syngas conversion to methanol 1138
- 4.14.3.2 Biomass gasification and syngas fermentation 1142
- 4.14.3.3 Biomass gasification and syngas thermochemical conversion 1142
- 4.14.4 Hydrothermal cracking 1143
- 4.14.5 SWOT analysis 1144
- 4.14.1 Plastic pyrolysis 1133
- 4.15 ELECTROFUELS (E-FUELS) 1145
- 4.15.1 Introduction 1145
- 4.15.1.1 Benefits of e-fuels 1147
- 4.15.2 Feedstocks 1148
- 4.15.2.1 Hydrogen electrolysis 1148
- 4.15.2.2 CO2 capture 1149
- 4.15.3 SWOT analysis 1149
- 4.15.4 Production 1150
- 4.15.4.1 eFuel production facilities, current and planned 1153
- 4.15.5 Electrolysers 1154
- 4.15.5.1 Commercial alkaline electrolyser cells (AECs) 1155
- 4.15.5.2 PEM electrolysers (PEMEC) 1155
- 4.15.5.3 High-temperature solid oxide electrolyser cells (SOECs) 1156
- 4.15.6 Prices 1156
- 4.15.7 Market challenges 1159
- 4.15.8 Companies 1160
- 4.15.1 Introduction 1145
- 4.16 ALGAE-DERIVED BIOFUELS 1161
- 4.16.1 Technology description 1161
- 4.16.2 Conversion pathways 1161
- 4.16.3 SWOT analysis 1162
- 4.16.4 Production 1163
- 4.16.5 Market challenges 1164
- 4.16.6 Prices 1165
- 4.16.7 Producers 1166
- 4.17 GREEN AMMONIA 1166
- 4.17.1 Production 1166
- 4.17.2 Decarbonisation of ammonia production 1168
- 4.17.3 Green ammonia projects 1169
- 4.17.4 Green ammonia synthesis methods 1169
- 4.17.4.1 Haber-Bosch process 1169
- 4.17.4.2 Biological nitrogen fixation 1170
- 4.17.4.3 Electrochemical production 1171
- 4.17.4.4 Chemical looping processes 1171
- 4.17.5 SWOT analysis 1171
- 4.17.6 Blue ammonia 1172
- 4.17.6.1 Blue ammonia projects 1172
- 4.17.7 Markets and applications 1173
- 4.17.7.1 Chemical energy storage 1173
- 4.17.7.1.1 Ammonia fuel cells 1173
- 4.17.7.2 Marine fuel 1174
- 4.17.7.1 Chemical energy storage 1173
- 4.17.8 Prices 1176
- 4.17.9 Estimated market demand 1178
- 4.17.10 Companies and projects 1178
- 4.18 BIO-OILS (PYROLYSIS OIL) 1180
- 4.18.1 Description 1180
- 4.18.1.1 Advantages of bio-oils 1180
- 4.18.2 Production 1182
- 4.18.2.1 Fast Pyrolysis 1182
- 4.18.2.2 Costs of production 1182
- 4.18.2.3 Upgrading 1182
- 4.18.3 SWOT analysis 1184
- 4.18.4 Applications 1185
- 4.18.5 Bio-oil producers 1185
- 4.18.6 Prices 1186
- 4.18.1 Description 1180
- 4.19 REFUSE-DERIVED FUELS (RDF) 1187
- 4.19.1 Overview 1187
- 4.19.2 Production 1187
- 4.19.2.1 Production process 1188
- 4.19.2.2 Mechanical biological treatment 1188
- 4.19.3 Markets 1189
- 4.20 COMPANY PROFILES 1190 (164 company profiles)
5 BIO-BASED PAINTS AND COATINGS MARKET 1323
- 5.1 The global paints and coatings market 1323
- 5.2 Bio-based paints and coatings 1323
- 5.3 Challenges using bio-based paints and coatings 1324
- 5.4 Types of bio-based coatings and materials 1325
- 5.4.1 Alkyd coatings 1325
- 5.4.1.1 Alkyd resin properties 1325
- 5.4.1.2 Biobased alkyd coatings 1326
- 5.4.1.3 Products 1327
- 5.4.2 Polyurethane coatings 1329
- 5.4.2.1 Properties 1329
- 5.4.2.2 Biobased polyurethane coatings 1329
- 5.4.2.3 Products 1331
- 5.4.3 Epoxy coatings 1331
- 5.4.3.1 Properties 1332
- 5.4.3.2 Biobased epoxy coatings 1332
- 5.4.3.3 Products 1334
- 5.4.4 Acrylate resins 1334
- 5.4.4.1 Properties 1335
- 5.4.4.2 Biobased acrylates 1335
- 5.4.4.3 Products 1335
- 5.4.5 Polylactic acid (Bio-PLA) 1336
- 5.4.5.1 Properties 1338
- 5.4.5.2 Bio-PLA coatings and films 1339
- 5.4.6 Polyhydroxyalkanoates (PHA) 1339
- 5.4.6.1 Properties 1341
- 5.4.6.2 PHA coatings 1344
- 5.4.6.3 Commercially available PHAs 1344
- 5.4.7 Cellulose 1347
- 5.4.7.1 Microfibrillated cellulose (MFC) 1352
- 5.4.7.1.1 Properties 1352
- 5.4.7.1.2 Applications in paints and coatings 1353
- 5.4.7.2 Cellulose nanofibers 1354
- 5.4.7.2.1 Properties 1354
- 5.4.7.2.2 Product developers 1356
- 5.4.7.3 Cellulose nanocrystals 1358
- 5.4.7.4 Bacterial Nanocellulose (BNC) 1360
- 5.4.7.1 Microfibrillated cellulose (MFC) 1352
- 5.4.8 Rosins 1360
- 5.4.9 Biobased carbon black 1361
- 5.4.9.1 Lignin-based 1361
- 5.4.9.2 Algae-based 1361
- 5.4.10 Lignin 1361
- 5.4.10.1 Application in coatings 1362
- 5.4.11 Edible coatings 1362
- 5.4.12 Protein-based biomaterials for coatings 1364
- 5.4.12.1 Plant derived proteins 1364
- 5.4.12.2 Animal origin proteins 1364
- 5.4.13 Alginate 1366
- 5.4.1 Alkyd coatings 1325
- 5.5 Market for bio-based paints and coatings 1368
- 5.5.1 Global market revenues to 2033, total 1368
- 5.5.2 Global market revenues to 2033, by market 1369
- 5.6 COMPANY PROFILES 1372 (130 company profiles)
6 CARBON CAPTURE, UTILIZATION AND STORAGE MARKET 1493
- 6.1 Main sources of carbon dioxide emissions 1493
- 6.2 CO2 as a commodity 1494
- 6.3 Meeting climate targets 1496
- 6.4 Market drivers and trends 1497
- 6.5 The current market and future outlook 1498
- 6.6 CCUS Industry developments 2020-2023 1499
- 6.7 CCUS investments 1504
- 6.7.1 Venture Capital Funding 1504
- 6.8 Government CCUS initiatives 1505
- 6.8.1 North America 1505
- 6.8.2 Europe 1505
- 6.8.3 China 1506
- 6.9 Market map 1508
- 6.10 Commercial CCUS facilities and projects 1510
- 6.10.1 Facilities 1511
- 6.10.1.1 Operational 1511
- 6.10.1.2 Under development/construction 1513
- 6.11 CCUS Value Chain 1519
- 6.12 Key market barriers for CCUS 1520
- 6.13 What is CCUS? 1521
- 6.13.1 Carbon Capture 1526
- 6.13.1.1 Source Characterization 1526
- 6.13.1.2 Purification 1527
- 6.13.1.3 CO2 capture technologies 1528
- 6.13.2 Carbon Utilization 1531
- 6.13.2.1 CO2 utilization pathways 1532
- 6.13.3 Carbon storage 1533
- 6.13.3.1 Passive storage 1533
- 6.13.3.2 Enhanced oil recovery 1534
- 6.14 Transporting CO2 1535
- 6.14.1 Methods of CO2 transport 1535
- 6.14.1.1 Pipeline 1536
- 6.14.1.2 Ship 1537
- 6.14.1.3 Road 1537
- 6.14.1.4 Rail 1537
- 6.14.2 Safety 1538
- 6.15 Costs 1539
- 6.15.1 Cost of CO2 transport 1540
- 6.16 Carbon credits 1542
- 6.17 CARBON CAPTURE 1543
- 6.17.1 CO2 capture from point sources 1544
- 6.17.1.1 Transportation 1545
- 6.17.1.2 Global point source CO2 capture capacities 1545
- 6.17.1.3 By source 1547
- 6.17.1.4 By endpoint 1548
- 6.17.2 Main carbon capture processes 1549
- 6.17.2.1 Materials 1549
- 6.17.2.2 Post-combustion 1551
- 6.17.2.3 Oxy-fuel combustion 1552
- 6.17.2.4 Liquid or supercritical CO2: Allam-Fetvedt Cycle 1553
- 6.17.2.5 Pre-combustion 1554
- 6.17.3 Carbon separation technologies 1555
- 6.17.3.1 Absorption capture 1557
- 6.17.3.2 Adsorption capture 1561
- 6.17.3.3 Membranes 1563
- 6.17.3.4 Liquid or supercritical CO2 (Cryogenic) capture 1565
- 6.17.3.5 Chemical Looping-Based Capture 1566
- 6.17.3.6 Calix Advanced Calciner 1567
- 6.17.3.7 Other technologies 1568
- 6.17.3.7.1 Solid Oxide Fuel Cells (SOFCs) 1569
- 6.17.3.7.2 Microalgae Carbon Capture 1570
- 6.17.3.8 Comparison of key separation technologies 1571
- 6.17.3.9 Technology readiness level (TRL) of gas separtion technologies 1572
- 6.17.4 Opportunities and barriers 1573
- 6.17.5 Costs of CO2 capture 1575
- 6.17.6 CO2 capture capacity 1576
- 6.17.7 Bioenergy with carbon capture and storage (BECCS) 1578
- 6.17.7.1 Overview of technology 1578
- 6.17.7.2 Biomass conversion 1580
- 6.17.7.3 BECCS facilities 1580
- 6.17.7.4 Challenges 1581
- 6.17.8 Direct air capture (DAC) 1582
- 6.17.8.1 Description 1582
- 6.17.8.2 Deployment 1584
- 6.17.8.3 Point source carbon capture versus Direct Air Capture 1584
- 6.17.8.4 Technologies 1585
- 6.17.8.4.1 Solid sorbents 1586
- 6.17.8.4.2 Liquid sorbents 1588
- 6.17.8.4.3 Liquid solvents 1589
- 6.17.8.4.4 Airflow equipment integration 1590
- 6.17.8.4.5 Passive Direct Air Capture (PDAC) 1590
- 6.17.8.4.6 Direct conversion 1591
- 6.17.8.4.7 Co-product generation 1591
- 6.17.8.4.8 Low Temperature DAC 1591
- 6.17.8.4.9 Regeneration methods 1591
- 6.17.8.5 Commercialization and plants 1592
- 6.17.8.6 Metal-organic frameworks (MOFs) in DAC 1593
- 6.17.8.7 DAC plants and projects-current and planned 1593
- 6.17.8.8 Markets for DAC 1600
- 6.17.8.9 Costs 1600
- 6.17.8.10 Challenges 1606
- 6.17.8.11 Players and production 1606
- 6.17.9 Other technologies 1607
- 6.17.9.1 Enhanced weathering 1608
- 6.17.9.2 Afforestation and reforestation 1608
- 6.17.9.3 Soil carbon sequestration (SCS) 1609
- 6.17.9.4 Biochar 1609
- 6.17.9.5 Ocean fertilisation 1611
- 6.17.9.6 Ocean alkalinisation 1611
- 6.18 CARBON UTILIZATION 1613
- 6.18.1 Overview 1613
- 6.18.1.1 Current market status 1613
- 6.18.1.2 Benefits of carbon utilization 1617
- 6.18.1.3 Market challenges 1619
- 6.18.2 Co2 utilization pathways 1620
- 6.18.3 Conversion processes 1623
- 6.18.3.1 Thermochemical 1623
- 6.18.3.1.1 Process overview 1623
- 6.18.3.1.2 Plasma-assisted CO2 conversion 1626
- 6.18.3.2 Electrochemical conversion of CO2 1627
- 6.18.3.2.1 Process overview 1628
- 6.18.3.3 Photocatalytic and photothermal catalytic conversion of CO2 1630
- 6.18.3.4 Catalytic conversion of CO2 1630
- 6.18.3.5 Biological conversion of CO2 1631
- 6.18.3.6 Copolymerization of CO2 1634
- 6.18.3.7 Mineral carbonation 1636
- 6.18.4 CO2-derived products 1639
- 6.18.4.1 Fuels 1639
- 6.18.4.1.1 Overview 1639
- 6.18.4.1.2 Production routes 1641
- 6.18.4.1.3 Methanol 1642
- 6.18.4.1.4 Algae based biofuels 1643
- 6.18.4.1.5 CO₂-fuels from solar 1644
- 6.18.4.1.6 Companies 1645
- 6.18.4.1.7 Challenges 1648
- 6.18.4.2 Chemicals 1648
- 6.18.4.2.1 Overview 1648
- 6.18.4.2.2 Scalability 1649
- 6.18.4.2.3 Applications 1650
- 6.18.4.2.3.1 Urea production 1650
- 6.18.4.2.3.2 CO₂-derived polymers 1650
- 6.18.4.2.3.3 Inert gas in semiconductor manufacturing 1652
- 6.18.4.2.3.4 Carbon nanotubes 1652
- 6.18.4.2.4 Companies 1652
- 6.18.4.3 Construction materials 1654
- 6.18.4.3.1 Overview 1654
- 6.18.4.3.2 CCUS technologies 1656
- 6.18.4.3.3 Carbonated aggregates 1658
- 6.18.4.3.4 Additives during mixing 1660
- 6.18.4.3.5 Concrete curing 1660
- 6.18.4.3.6 Costs 1661
- 6.18.4.3.7 Companies 1661
- 6.18.4.3.8 Challenges 1663
- 6.18.4.4 CO2 Utilization in Biological Yield-Boosting 1664
- 6.18.4.4.1 Overview 1664
- 6.18.4.4.2 Applications 1664
- 6.18.4.4.2.1 Greenhouses 1664
- 6.18.4.4.2.2 Algae cultivation 1664
- 6.18.4.4.2.3 Microbial conversion 1665
- 6.18.4.4.2.4 Food and feed production 1667
- 6.18.4.4.3 Companies 1667
- 6.18.5 CO₂ Utilization in Enhanced Oil Recovery 1669
- 6.18.5.1 Overview 1669
- 6.18.5.1.1 Process 1669
- 6.18.5.1.2 CO₂ sources 1670
- 6.18.5.2 CO₂-EOR facilities and projects 1671
- 6.18.5.3 Challenges 1673
- 6.18.6 Enhanced mineralization 1674
- 6.18.6.1 Advantages 1674
- 6.18.6.2 In situ and ex-situ mineralization 1675
- 6.18.6.3 Enhanced mineralization pathways 1676
- 6.18.6.4 Challenges 1677
- 6.19 CARBON STORAGE 1678
- 6.19.1 CO2 storage sites 1679
- 6.19.1.1 Storage types for geologic CO2 storage 1679
- 6.19.1.2 Oil and gas fields 1681
- 6.19.1.3 Saline formations 1682
- 6.19.2 Global CO2 storage capacity 1685
- 6.19.3 Costs 1687
- 6.19.4 Challenges 1687
- 6.20 COMPANY PROFILES 1689 (243 company profiles)
7 ADVANCED CHEMICAL RECYCLING 1877
- 7.1 Classification of recycling technologies 1877
- 7.2 Introduction 1878
- 7.3 Plastic recycling 1879
- 7.3.1 Mechanical recycling 1880
- 7.3.1.1 Closed-loop mechanical recycling 1881
- 7.3.1.2 Open-loop mechanical recycling 1881
- 7.3.1.3 Polymer types, use, and recovery 1881
- 7.3.2 Advanced chemical recycling 1882
- 7.3.2.1 Main streams of plastic waste 1883
- 7.3.2.2 Comparison of mechanical and advanced chemical recycling 1884
- 7.3.1 Mechanical recycling 1880
- 7.4 The advanced recycling market 1885
- 7.4.1 Market drivers and trends 1885
- 7.4.2 Industry developments 2020-2023 1886
- 7.4.3 Capacities 1889
- 7.4.4 Global polymer demand 2022-2040, segmented by recycling technology 1892
- 7.4.5 Global market by recycling process 1893
- 7.4.6 Chemically recycled plastic products 1894
- 7.4.7 Market map 1895
- 7.4.8 Value chain 1896
- 7.4.9 Life Cycle Assessments (LCA) of advanced chemical recycling processes 1897
- 7.4.10 Market challenges 1898
- 7.5 Advanced recycling technologies 1899
- 7.5.1 Applications 1899
- 7.5.1.1 Pyrolysis 1900
- 7.5.1.2 Non-catalytic 1901
- 7.5.1.3 Catalytic 1902
- 7.5.1.3.1 Polystyrene pyrolysis 1904
- 7.5.1.3.2 Pyrolysis for production of bio fuel 1904
- 7.5.1.3.3 Used tires pyrolysis 1908
- 7.5.1.3.4 Conversion to biofuel 1909
- 7.5.1.3.5 Co-pyrolysis of biomass and plastic wastes 1910
- 7.5.1.4 SWOT analysis 1911
- 7.5.1.4.1 Companies and capacities 1912
- 7.5.2 Gasification 1913
- 7.5.2.1 Technology overview 1913
- 7.5.2.1.1 Syngas conversion to methanol 1914
- 7.5.2.1.2 Biomass gasification and syngas fermentation 1918
- 7.5.2.1.3 Biomass gasification and syngas thermochemical conversion 1918
- 7.5.2.2 SWOT analysis 1919
- 7.5.2.3 Companies and capacities (current and planned) 1920
- 7.5.2.1 Technology overview 1913
- 7.5.3 Dissolution 1921
- 7.5.3.1 Technology overview 1921
- 7.5.3.2 SWOT analysis 1922
- 7.5.3.3 Companies and capacities (current and planned) 1923
- 7.5.4 Depolymerisation 1924
- 7.5.4.1 Hydrolysis 1926
- 7.5.4.1.1 Technology overview 1926
- 7.5.4.1.2 SWOT analysis 1927
- 7.5.4.2 Enzymolysis 1928
- 7.5.4.2.1 Technology overview 1928
- 7.5.4.2.2 SWOT analysis 1929
- 7.5.4.3 Methanolysis 1930
- 7.5.4.3.1 Technology overview 1930
- 7.5.4.3.2 SWOT analysis 1931
- 7.5.4.4 Glycolysis 1932
- 7.5.4.4.1 Technology overview 1932
- 7.5.4.4.2 SWOT analysis 1934
- 7.5.4.5 Aminolysis 1935
- 7.5.4.5.1 Technology overview 1935
- 7.5.4.5.2 SWOT analysis 1935
- 7.5.4.6 Companies and capacities (current and planned) 1936
- 7.5.4.1 Hydrolysis 1926
- 7.5.5 Other advanced chemical recycling technologies 1937
- 7.5.5.1 Hydrothermal cracking 1937
- 7.5.5.2 Pyrolysis with in-line reforming 1938
- 7.5.5.3 Microwave-assisted pyrolysis 1938
- 7.5.5.4 Plasma pyrolysis 1939
- 7.5.5.5 Plasma gasification 1940
- 7.5.5.6 Supercritical fluids 1940
- 7.5.5.7 Carbon fiber recycling 1941
- 7.5.5.7.1 Processes 1941
- 7.5.5.7.2 Companies 1944
- 7.5.1 Applications 1899
- 7.6 COMPANY PROFILES 1945 (144 company profiles)
8 REFERENCES 2070
List of Tables
- Table 1. Plant-based feedstocks and biochemicals produced. 97
- Table 2. Waste-based feedstocks and biochemicals produced. 97
- Table 3. Microbial and mineral-based feedstocks and biochemicals produced. 98
- Table 4. Lactide applications. 119
- Table 5. Biobased MEG producers capacities. 160
- Table 6. Commercial and pre-commercial biorefinery lignin production facilities and processes 215
- Table 7. Lignin aromatic compound products. 216
- Table 8. Prices of benzene, toluene, xylene and their derivatives. 217
- Table 9. Lignin products in polymeric materials. 219
- Table 10. Application of lignin in plastics and composites. 220
- Table 11. Type of biodegradation. 393
- Table 12. Advantages and disadvantages of biobased plastics compared to conventional plastics. 394
- Table 13. Types of Bio-based and/or Biodegradable Plastics, applications. 395
- Table 14. Key market players by Bio-based and/or Biodegradable Plastic types. 397
- Table 15. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 398
- Table 16. Lactic acid producers and production capacities. 400
- Table 17. PLA producers and production capacities. 401
- Table 18. Planned PLA capacity expansions in China. 401
- Table 19. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 403
- Table 20. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 404
- Table 21. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 406
- Table 22. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 406
- Table 23. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 408
- Table 24. PEF vs. PET. 409
- Table 25. FDCA and PEF producers. 410
- Table 26. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 413
- Table 27. Leading Bio-PA producers production capacities. 414
- Table 28. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 415
- Table 29. Leading PBAT producers, production capacities and brands. 416
- Table 30. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 418
- Table 31. Leading PBS producers and production capacities. 419
- Table 32. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 420
- Table 33. Leading Bio-PE producers. 421
- Table 34. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 423
- Table 35. Leading Bio-PP producers and capacities. 423
- Table 36.Types of PHAs and properties. 428
- Table 37. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 430
- Table 38. Polyhydroxyalkanoate (PHA) extraction methods. 432
- Table 39. Polyhydroxyalkanoates (PHA) market analysis. 434
- Table 40. Commercially available PHAs. 435
- Table 41. Markets and applications for PHAs. 437
- Table 42. Applications, advantages and disadvantages of PHAs in packaging. 438
- Table 43. Polyhydroxyalkanoates (PHA) producers. 441
- Table 44. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 444
- Table 45. Leading MFC producers and capacities. 445
- Table 46. Synthesis methods for cellulose nanocrystals (CNC). 446
- Table 47. CNC sources, size and yield. 447
- Table 48. CNC properties. 448
- Table 49. Mechanical properties of CNC and other reinforcement materials. 449
- Table 50. Applications of nanocrystalline cellulose (NCC). 450
- Table 51. Cellulose nanocrystals analysis. 451
- Table 52: Cellulose nanocrystal production capacities and production process, by producer. 452
- Table 53. Applications of cellulose nanofibers (CNF). 453
- Table 54. Cellulose nanofibers market analysis. 454
- Table 55. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 456
- Table 56. Applications of bacterial nanocellulose (BNC). 460
- Table 57. Types of protein based-bioplastics, applications and companies. 462
- Table 58. Types of algal and fungal based-bioplastics, applications and companies. 463
- Table 59. Overview of alginate-description, properties, application and market size. 464
- Table 60. Companies developing algal-based bioplastics. 465
- Table 61. Overview of mycelium fibers-description, properties, drawbacks and applications. 466
- Table 62. Companies developing mycelium-based bioplastics. 468
- Table 63. Overview of chitosan-description, properties, drawbacks and applications. 469
- Table 64. Global production capacities of biobased and sustainable plastics in 2019-2034, by region, tons. 470
- Table 65. Biobased and sustainable plastics producers in North America. 471
- Table 66. Biobased and sustainable plastics producers in Europe. 472
- Table 67. Biobased and sustainable plastics producers in Asia-Pacific. 473
- Table 68. Biobased and sustainable plastics producers in Latin America. 474
- Table 69. Processes for bioplastics in packaging. 476
- Table 70. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 478
- Table 71. Typical applications for bioplastics in flexible packaging. 479
- Table 72. Typical applications for bioplastics in rigid packaging. 481
- Table 73. Types of next-gen natural fibers. 493
- Table 74. Application, manufacturing method, and matrix materials of natural fibers. 497
- Table 75. Typical properties of natural fibers. 498
- Table 76. Commercially available next-gen natural fiber products. 499
- Table 77. Market drivers for natural fibers. 502
- Table 78. Overview of cotton fibers-description, properties, drawbacks and applications. 504
- Table 79. Overview of kapok fibers-description, properties, drawbacks and applications. 505
- Table 80. Overview of luffa fibers-description, properties, drawbacks and applications. 507
- Table 81. Overview of jute fibers-description, properties, drawbacks and applications. 508
- Table 82. Overview of hemp fibers-description, properties, drawbacks and applications. 510
- Table 83. Overview of flax fibers-description, properties, drawbacks and applications. 511
- Table 84. Overview of ramie fibers- description, properties, drawbacks and applications. 513
- Table 85. Overview of kenaf fibers-description, properties, drawbacks and applications. 514
- Table 86. Overview of sisal leaf fibers-description, properties, drawbacks and applications. 516
- Table 87. Overview of abaca fibers-description, properties, drawbacks and applications. 517
- Table 88. Overview of coir fibers-description, properties, drawbacks and applications. 519
- Table 89. Overview of banana fibers-description, properties, drawbacks and applications. 520
- Table 90. Overview of pineapple fibers-description, properties, drawbacks and applications. 522
- Table 91. Overview of rice fibers-description, properties, drawbacks and applications. 523
- Table 92. Overview of corn fibers-description, properties, drawbacks and applications. 524
- Table 93. Overview of switch grass fibers-description, properties and applications. 525
- Table 94. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 525
- Table 95. Overview of bamboo fibers-description, properties, drawbacks and applications. 526
- Table 96. Overview of mycelium fibers-description, properties, drawbacks and applications. 530
- Table 97. Overview of chitosan fibers-description, properties, drawbacks and applications. 531
- Table 98. Overview of alginate-description, properties, application and market size. 532
- Table 99. Overview of wool fibers-description, properties, drawbacks and applications. 533
- Table 100. Alternative wool materials producers. 534
- Table 101. Overview of silk fibers-description, properties, application and market size. 535
- Table 102. Alternative silk materials producers. 536
- Table 103. Alternative leather materials producers. 537
- Table 104. Next-gen fur producers. 539
- Table 105. Alternative down materials producers. 539
- Table 106. Applications of natural fiber composites. 540
- Table 107. Typical properties of short natural fiber-thermoplastic composites. 542
- Table 108. Properties of non-woven natural fiber mat composites. 543
- Table 109. Properties of aligned natural fiber composites. 544
- Table 110. Properties of natural fiber-bio-based polymer compounds. 544
- Table 111. Properties of natural fiber-bio-based polymer non-woven mats. 545
- Table 112. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 546
- Table 113. Natural fiber-reinforced polymer composite in the automotive market. 548
- Table 114. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 549
- Table 115. Applications of natural fibers in the automotive industry. 551
- Table 116. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 552
- Table 117. Applications of natural fibers in the building/construction sector. 552
- Table 118. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use. 553
- Table 119. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use. 554
- Table 120. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 557
- Table 121. Technical lignin types and applications. 565
- Table 122. Classification of technical lignins. 567
- Table 123. Lignin content of selected biomass. 568
- Table 124. Properties of lignins and their applications. 569
- Table 125. Example markets and applications for lignin. 571
- Table 126. Processes for lignin production. 573
- Table 127. Biorefinery feedstocks. 579
- Table 128. Comparison of pulping and biorefinery lignins. 579
- Table 129. Commercial and pre-commercial biorefinery lignin production facilities and processes 580
- Table 130. Market drivers and trends for lignin. 584
- Table 131. Production capacities of technical lignin producers. 585
- Table 132. Production capacities of biorefinery lignin producers. 586
- Table 133. Estimated consumption of lignin, 2019-2034 (000 MT). 587
- Table 134. Prices of benzene, toluene, xylene and their derivatives. 589
- Table 135. Application of lignin in plastics and polymers. 590
- Table 136. Lignin-derived anodes in lithium batteries. 597
- Table 137. Application of lignin in binders, emulsifiers and dispersants. 599
- Table 138. Lactips plastic pellets. 816
- Table 139. Oji Holdings CNF products. 889
- Table 140. Market drivers for biofuels. 1028
- Table 141. Market challenges for biofuels. 1029
- Table 142. Liquid biofuels market 2020-2034, by type and production. 1031
- Table 143. Comparison of biofuel costs (USD/liter) 2023, by type. 1034
- Table 144. Categories and examples of solid biofuel. 1035
- Table 145. Comparison of biofuels and e-fuels to fossil and electricity. 1038
- Table 146. Classification of biomass feedstock. 1039
- Table 147. Biorefinery feedstocks. 1040
- Table 148. Feedstock conversion pathways. 1040
- Table 149. First-Generation Feedstocks. 1041
- Table 150. Lignocellulosic ethanol plants and capacities. 1043
- Table 151. Comparison of pulping and biorefinery lignins. 1044
- Table 152. Commercial and pre-commercial biorefinery lignin production facilities and processes 1045
- Table 153. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 1047
- Table 154. Properties of microalgae and macroalgae. 1049
- Table 155. Yield of algae and other biodiesel crops. 1050
- Table 156. Advantages and disadvantages of biofuels, by generation. 1051
- Table 157. Biodiesel by generation. 1062
- Table 158. Biodiesel production techniques. 1065
- Table 159. Summary of pyrolysis technique under different operating conditions. 1066
- Table 160. Biomass materials and their bio-oil yield. 1067
- Table 161. Biofuel production cost from the biomass pyrolysis process. 1068
- Table 162. Properties of vegetable oils in comparison to diesel. 1070
- Table 163. Main producers of HVO and capacities. 1071
- Table 164. Example commercial Development of BtL processes. 1072
- Table 165. Pilot or demo projects for biomass to liquid (BtL) processes. 1073
- Table 166. Global biodiesel consumption, 2010-2034 (M litres/year). 1078
- Table 167. Global renewable diesel consumption, to 2033 (M litres/year). 1083
- Table 168. Renewable diesel price ranges. 1084
- Table 169. Advantages and disadvantages of Bio-aviation fuel. 1085
- Table 170. Production pathways for Bio-aviation fuel. 1087
- Table 171. Current and announced Bio-aviation fuel facilities and capacities. 1090
- Table 172. Global bio-jet fuel consumption to 2033 (Million litres/year). 1091
- Table 173. Comparison of biogas, biomethane and natural gas. 1097
- Table 174. Processes in bioethanol production. 1105
- Table 175. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 1107
- Table 176. Ethanol consumption 2010-2034 (million litres). 1108
- Table 177. Biogas feedstocks. 1114
- Table 178. Existing and planned bio-LNG production plants. 1122
- Table 179. Methods for capturing carbon dioxide from biogas. 1123
- Table 180. Comparison of different Bio-H2 production pathways. 1127
- Table 181. Markets and applications for biohydrogen. 1130
- Table 182. Summary of gasification technologies. 1136
- Table 183. Overview of hydrothermal cracking for advanced chemical recycling. 1142
- Table 184. Applications of e-fuels, by type. 1145
- Table 185. Overview of e-fuels. 1146
- Table 186. Benefits of e-fuels. 1146
- Table 187. eFuel production facilities, current and planned. 1152
- Table 188. Main characteristics of different electrolyzer technologies. 1153
- Table 189. Market challenges for e-fuels. 1158
- Table 190. E-fuels companies. 1159
- Table 191. Algae-derived biofuel producers. 1165
- Table 192. Green ammonia projects (current and planned). 1168
- Table 193. Blue ammonia projects. 1172
- Table 194. Ammonia fuel cell technologies. 1172
- Table 195. Market overview of green ammonia in marine fuel. 1174
- Table 196. Summary of marine alternative fuels. 1174
- Table 197. Estimated costs for different types of ammonia. 1176
- Table 198. Main players in green ammonia. 1177
- Table 199. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils. 1180
- Table 200. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 1180
- Table 201. Main techniques used to upgrade bio-oil into higher-quality fuels. 1182
- Table 202. Markets and applications for bio-oil. 1184
- Table 203. Bio-oil producers. 1184
- Table 204. Key resource recovery technologies 1187
- Table 205. Markets and end uses for refuse-derived fuels (RDF). 1188
- Table 206. Granbio Nanocellulose Processes. 1243
- Table 207. Types of alkyd resins and properties. 1324
- Table 208. Market summary for biobased alkyd coatings-raw materials, advantages, disadvantages, applications and producers. 1326
- Table 209. Biobased alkyd coating products. 1326
- Table 210. Types of polyols. 1328
- Table 211. Polyol producers. 1329
- Table 212. Biobased polyurethane coating products. 1330
- Table 213. Market summary for biobased epoxy resins. 1331
- Table 214. Biobased polyurethane coating products. 1333
- Table 215. Biobased acrylate resin products. 1335
- Table 216. Polylactic acid (PLA) market analysis. 1335
- Table 217. PLA producers and production capacities. 1337
- Table 218. Polyhydroxyalkanoates (PHA) market analysis. 1339
- Table 219.Types of PHAs and properties. 1342
- Table 220. Polyhydroxyalkanoates (PHA) producers. 1343
- Table 221. Commercially available PHAs. 1345
- Table 222. Properties of micro/nanocellulose, by type. 1347
- Table 223. Types of nanocellulose. 1350
- Table 224: MFC production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1352
- Table 225. Market overview for cellulose nanofibers in paints and coatings. 1353
- Table 226. Companies developing cellulose nanofibers products in paints and coatings. 1355
- Table 227. CNC properties. 1357
- Table 228: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1358
- Table 229. Edible coatings market summary. 1362
- Table 230. Types of protein based-biomaterials, applications and companies. 1364
- Table 231. Overview of alginate-description, properties, application and market size. 1365
- Table 232. Global market revenues for biobased paints and coatings, 2018-2034 (billions USD). 1367
- Table 233. Market revenues for biobased paints and coatings, 2018-2034(billions USD), conservative estimate. 1368
- Table 234. Market revenues for biobased paints and coatings, 2018-2034 (billions USD), high estimate. 1370
- Table 235. Oji Holdings CNF products. 1456
- Table 236. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends. 1496
- Table 237. Carbon capture, usage, and storage (CCUS) industry developments 2020-2023. 1498
- Table 238. Demonstration and commercial CCUS facilities in China. 1505
- Table 239. Global commercial CCUS facilities-in operation. 1510
- Table 240. Global commercial CCUS facilities-under development/construction. 1512
- Table 241. Key market barriers for CCUS. 1519
- Table 242. CO2 utilization and removal pathways 1522
- Table 243. Approaches for capturing carbon dioxide (CO2) from point sources. 1525
- Table 244. CO2 capture technologies. 1527
- Table 245. Advantages and challenges of carbon capture technologies. 1528
- Table 246. Overview of commercial materials and processes utilized in carbon capture. 1528
- Table 247. Methods of CO2 transport. 1535
- Table 248. Carbon capture, transport, and storage cost per unit of CO2 1538
- Table 249. Estimated capital costs for commercial-scale carbon capture. 1538
- Table 250. Point source examples. 1543
- Table 251. Assessment of carbon capture materials 1548
- Table 252. Chemical solvents used in post-combustion. 1551
- Table 253. Commercially available physical solvents for pre-combustion carbon capture. 1554
- Table 254. Main capture processes and their separation technologies. 1554
- Table 255. Absorption methods for CO2 capture overview. 1556
- Table 256. Commercially available physical solvents used in CO2 absorption. 1558
- Table 257. Adsorption methods for CO2 capture overview. 1560
- Table 258. Membrane-based methods for CO2 capture overview. 1562
- Table 259. Benefits and drawbacks of microalgae carbon capture. 1570
- Table 260. Comparison of main separation technologies. 1570
- Table 261. Technology readiness level (TRL) of gas separtion technologies 1571
- Table 262. Opportunities and Barriers by sector. 1572
- Table 263. Existing and planned capacity for sequestration of biogenic carbon. 1579
- Table 264. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 1580
- Table 265. Advantages and disadvantages of DAC. 1582
- Table 266. Companies developing airflow equipment integration with DAC. 1589
- Table 267. Companies developing Passive Direct Air Capture (PDAC) technologies. 1589
- Table 268. Companies developing regeneration methods for DAC technologies. 1590
- Table 269. DAC companies and technologies. 1591
- Table 270. DAC technology developers and production. 1593
- Table 271. DAC projects in development. 1598
- Table 272. Markets for DAC. 1599
- Table 273. Costs summary for DAC. 1599
- Table 274. Cost estimates of DAC. 1603
- Table 275. Challenges for DAC technology. 1605
- Table 276. DAC companies and technologies. 1606
- Table 277. Biological CCS technologies. 1606
- Table 278. Biochar in carbon capture overview. 1609
- Table 279. Carbon utilization revenue forecast by product (US$). 1616
- Table 280. CO2 utilization and removal pathways. 1616
- Table 281. Market challenges for CO2 utilization. 1618
- Table 282. Example CO2 utilization pathways. 1619
- Table 283. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages. 1622
- Table 284. Electrochemical CO₂ reduction products. 1626
- Table 285. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages. 1627
- Table 286. CO2 derived products via biological conversion-applications, advantages and disadvantages. 1631
- Table 287. Companies developing and producing CO2-based polymers. 1634
- Table 288. Companies developing mineral carbonation technologies. 1637
- Table 289. Market overview for CO2 derived fuels. 1638
- Table 290. Microalgae products and prices. 1642
- Table 291. Main Solar-Driven CO2 Conversion Approaches. 1643
- Table 292. Companies in CO2-derived fuel products. 1644
- Table 293. Commodity chemicals and fuels manufactured from CO2. 1648
- Table 294. Companies in CO2-derived chemicals products. 1651
- Table 295. Carbon capture technologies and projects in the cement sector 1655
- Table 296. Companies in CO2 derived building materials. 1660
- Table 297. Market challenges for CO2 utilization in construction materials. 1662
- Table 298. Companies in CO2 Utilization in Biological Yield-Boosting. 1666
- Table 299. Applications of CCS in oil and gas production. 1668
- Table 300. CO2 EOR/Storage Challenges. 1676
- Table 301. Storage and utilization of CO2. 1677
- Table 302. Global depleted reservoir storage projects. 1679
- Table 303. Global CO2 ECBM storage projects. 1679
- Table 304. CO2 EOR/storage projects. 1680
- Table 305. Global storage sites-saline aquifer projects. 1682
- Table 306. Global storage capacity estimates, by region. 1684
- Table 307. Types of recycling. 1876
- Table 308. Overview of the recycling technologies. 1879
- Table 309. Polymer types, use, and recovery. 1880
- Table 310. Composition of plastic waste streams. 1882
- Table 311. Comparison of mechanical and advanced chemical recycling. 1883
- Table 312. Market drivers and trends in the advanced chemical recycling market. 1884
- Table 313. Advanced recycling industry developments 2020-2023. 1885
- Table 314. Advanced recycling capacities, by technology. 1888
- Table 315. Example chemically recycled plastic products. 1893
- Table 316. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes. 1896
- Table 317. Challenges in the advanced recycling market. 1897
- Table 318. Applications of chemically recycled materials. 1898
- Table 319. Summary of non-catalytic pyrolysis technologies. 1900
- Table 320. Summary of catalytic pyrolysis technologies. 1901
- Table 321. Summary of pyrolysis technique under different operating conditions. 1905
- Table 322. Biomass materials and their bio-oil yield. 1906
- Table 323. Biofuel production cost from the biomass pyrolysis process. 1907
- Table 324. Pyrolysis companies and plant capacities, current and planned. 1911
- Table 325. Summary of gasification technologies. 1912
- Table 326. Advanced recycling (Gasification) companies. 1919
- Table 327. Summary of dissolution technologies. 1920
- Table 328. Advanced recycling (Dissolution) companies 1922
- Table 329. depolymerisation processes for PET, PU, PC and PA, products and yields. 1924
- Table 330. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1925
- Table 331. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1927
- Table 332. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1929
- Table 333. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1931
- Table 334. Summary of aminolysis technologies. 1934
- Table 335. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 1935
- Table 336. Overview of hydrothermal cracking for advanced chemical recycling. 1936
- Table 337. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 1937
- Table 338. Overview of microwave-assisted pyrolysis for advanced chemical recycling. 1937
- Table 339. Overview of plasma pyrolysis for advanced chemical recycling. 1938
- Table 340. Overview of plasma gasification for advanced chemical recycling. 1939
- Table 341. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 1941
- Table 342. Retention rate of tensile properties of recovered carbon fibres by different recycling processes. 1942
- Table 343. Recycled carbon fiber producers, technology and capacity. 1943
List of Figures
- Figure 1. Schematic of biorefinery processes. 95
- Figure 2. Global biomass utilization. 96
- Figure 3. Global production of starch for biobased chemicals and intermediates, 2018-2034 (metric tonnes). 103
- Figure 4. Global production of biobased lysine, 2018-2034 (metric tonnes). 106
- Figure 5. Global glucode production for bio-based chemicals and intermediates 2018-2034 (metric tonnes) 108
- Figure 6. Global production of bio-HMDA lysine, 2018-2034 (metric tonnes). 111
- Figure 7. Global production of bio-based DN5, 2018-2034 (metric tonnes). 114
- Figure 8. Global production of bio-based isosorbide, 2018-2034 (metric tonnes). 117
- Figure 9. L-lactic acid (L-LA) production, 2018-2034 (metric tonnes). 118
- Figure 10. Lactide production capacities, 2018-2034 (metric tonnes). 121
- Figure 11. Global production of bio-itaconic acid, 2018-2034 (metric tonnes). 125
- Figure 12. Potential industrial uses of 3-hydroxypropanoic acid. 126
- Figure 13. Global production of 3-HP, 2018-2034 (metric tonnes). 127
- Figure 14. Global production of bio-based acrylic acid, 2018-2034 (metric tonnes). 129
- Figure 15. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2034 (metric tonnes). 132
- Figure 16. Global production of bio-based Succinic acid, 2018-2034 (metric tonnes). 135
- Figure 17. Global production of 1,4-Butanediol (BDO), 2018-2034 (metric tonnes). 138
- Figure 18. Global production of bio-based tetrahydrofuran (THF), 2018-2034 (metric tonnes). 141
- Figure 19. Overview of Toray process. Overview of process 143
- Figure 20. Global production of bio-based caprolactam, 2018-2034 (metric tonnes). 145
- Figure 21. Global production of bio-based isobutanol, 2018-2034 (metric tonnes). 148
- Figure 22. Global production of bio-based 1,4-butanediol, 2018-2034 (metric tonnes). 151
- Figure 23. Global production of bio-based p-xylene, 2018-2034 (metric tonnes). 154
- Figure 24. Global production of biobased terephthalic acid (TPA), 2018-2034 (metric tonnes). 155
- Figure 25. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes). 158
- Figure 26. Global production of biobased MEG, 2018-2034 (metric tonnes). 160
- Figure 27. Global production of biobased 1,3 Proppanediol, 2018-2034 (metric tonnes). 161
- Figure 28. Bio-MEG production capacities, 2018-2034. 162
- Figure 29. Global production of biobased ethanol, 2018-2034 (metric tonnes). 166
- Figure 30. Global production of biobased ethylene, 2018-2034 (metric tonnes). 168
- Figure 31. Global production of biobased propylene, 2018-2034 (metric tonnes). 172
- Figure 32. Global production of biobased vinyl chloride, 2018-2034 (metric tonnes). 174
- Figure 33. Global production of biobased Methly methacrylate, 2018-2034 (metric tonnes). 178
- Figure 34. Global production of biobased aniline, 2018-2034 (metric tonnes). 183
- Figure 35. Global production of biobased fructose, 2018-2034 (metric tonnes). 187
- Figure 36. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2034 (metric tonnes). 190
- Figure 37. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2034 (metric tonnes). 194
- Figure 38. Global production of biobased Levulinic acid, 2018-2034 (metric tonnes). 197
- Figure 39. Global production of biobased FDME, 2018-2034 (metric tonnes). 200
- Figure 40. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2034 (metric tonnes). 204
- Figure 41. Global production of hemicellulose, 2018-2034 (metric tonnes). 208
- Figure 42. Global production of biobased furfural, 2018-2034 (metric tonnes). 211
- Figure 43. Global production of biobased furfuryl alcohol, 2018-2034 (metric tonnes). 213
- Figure 44. Schematic of WISA plywood home. 218
- Figure 45. Global production of biobased lignin, 2018-2034 (metric tonnes). 221
- Figure 46. Global production of biobased glycerol, 2018-2034 (metric tonnes). 223
- Figure 47. Global production of Bio-MPG, 2018-2034 (metric tonnes). 226
- Figure 48. Global production of biobased ECH, 2018-2034 (metric tonnes). 230
- Figure 49. Global production of biobased fatty acids, 2018-2034 (metric tonnes). 232
- Figure 50. Global production of PHA, 2018-2034 (metric tonnes). 235
- Figure 51. Sebacic acid production capacities, 2018-2034 (tonnes). 237
- Figure 52. Global production of biobased sebacic acid, 2018-2034 (metric tonnes). 240
- Figure 53. Production capacities for 11-Aminoundecanoic acid (11-AA), tonnes. 242
- Figure 54. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2034 (metric tonnes). 242
- Figure 55. Global production of biobased Dodecanedioic acid (DDDA), 2018-2034 (metric tonnes). 245
- Figure 56. Dodecanedioic acid (DDDA) production capacities, 2018-2034 (tonnes). 245
- Figure 57. Global production of biobased Epichlorohydrin, 2018-2034 (metric tonnes). 248
- Figure 58. Epichlorohydrin production capacities, 2018-2034 (tonnes). 248
- Figure 59. Global production of biobased Pentamethylene diisocyanate, 2018-2034 (metric tonnes). 251
- Figure 60. Global production of biobased casein, 2018-2034 (metric tonnes). 254
- Figure 61. Global production of food waste for biochemicals, 2018-2034 (million metric tonnes). 258
- Figure 62. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes). 262
- Figure 63. Global production of forestry waste for biochemicals, 2018-2034 (million metric tonnes). 265
- Figure 64. Global production of aquaculture/fishing waste for biochemicals, 2018-2034 (million metric tonnes). 269
- Figure 65. Global production of agricultural waste for biochemicals, 2018-2034 (million metric tonnes). 270
- Figure 66. Global production of municipal solid waste for biochemicals, 2018-2034 (million metric tonnes). 274
- Figure 67. Global production of industrial waste for biochemicals, 2018-2034 (million metric tonnes). 277
- Figure 68. Global production of biobased glycerol for biochemicals, 2018-2034 (million metric tonnes). 280
- Figure 69. Global production of waste oils for biochemicals, 2018-2034 (million metric tonnes). 284
- Figure 70. Global production of microbial and mineral sources for biochemicals, 2018-2034 (million metric tonnes). 286
- Figure 71. Global production of biogas, 2018-2034 (million metric tonnes). 297
- Figure 72. Global production of syngas, 2018-2034 (million metric tonnes). 302
- Figure 73. formicobio™ technology. 326
- Figure 74. Domsjö process. 332
- Figure 75. TMP-Bio Process. 335
- Figure 76. Lignin gel. 357
- Figure 77. BioFlex process. 360
- Figure 78. LX Process. 363
- Figure 79. METNIN™ Lignin refining technology. 368
- Figure 80. Enfinity cellulosic ethanol technology process. 376
- Figure 81. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 378
- Figure 82. UPM biorefinery process. 386
- Figure 83. The Proesa® Process. 388
- Figure 84. Goldilocks process and applications. 389
- Figure 85. Coca-Cola PlantBottle®. 392
- Figure 86. Interrelationship between conventional, bio-based and biodegradable plastics. 392
- Figure 87. Polylactic acid (Bio-PLA) production capacities 2019-2034 (1,000 tons). 403
- Figure 88. Polyethylene terephthalate (Bio-PET) production capacities 2019-2034 (1,000 tons) 405
- Figure 89. Polytrimethylene terephthalate (PTT) production capacities 2019-2034 (1,000 tons). 407
- Figure 90. Production capacities of Polyethylene furanoate (PEF) to 2025. 410
- Figure 91. Polyethylene furanoate (Bio-PEF) production capacities 2019-2034 (1,000 tons). 412
- Figure 92. Polyamides (Bio-PA) production capacities 2019-2034 (1,000 tons). 415
- Figure 93. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2034 (1,000 tons). 417
- Figure 94. Polybutylene succinate (PBS) production capacities 2019-2034 (1,000 tons). 420
- Figure 95. Polyethylene (Bio-PE) production capacities 2019-2034 (1,000 tons). 422
- Figure 96. Polypropylene (Bio-PP) production capacities 2019-2034 (1,000 tons). 424
- Figure 97. PHA family. 428
- Figure 98. PHA production capacities 2019-2034 (1,000 tons). 443
- Figure 99. TEM image of cellulose nanocrystals. 446
- Figure 100. CNC preparation. 446
- Figure 101. Extracting CNC from trees. 447
- Figure 102. CNC slurry. 450
- Figure 103. CNF gel. 453
- Figure 104. Bacterial nanocellulose shapes 459
- Figure 105. BLOOM masterbatch from Algix. 465
- Figure 106. Typical structure of mycelium-based foam. 467
- Figure 107. Commercial mycelium composite construction materials. 468
- Figure 108. Global production capacities of biobased and sustainable plastics 2022. 470
- Figure 109. Global production capacities of biobased and sustainable plastics 2033. 471
- Figure 110. Global production capacities for bioplastics by end user market 2019-2034, 1,000 tons. 475
- Figure 111. PHA bioplastics products. 477
- Figure 112. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes). 480
- Figure 113. Bioplastics for rigid packaging, 2019–2033 (‘000 tonnes). 482
- Figure 114. Global production capacities for biobased and biodegradable plastics in consumer products 2019-2034, in 1,000 tons. 483
- Figure 115. Global production capacities for biobased and biodegradable plastics in automotive 2019-2034, in 1,000 tons. 484
- Figure 116. Global production capacities for biobased and biodegradable plastics in building and construction 2019-2034, in 1,000 tons. 485
- Figure 117. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 487
- Figure 118. Reebok's [REE]GROW running shoes. 487
- Figure 119. Camper Runner K21. 489
- Figure 120. Global production capacities for biobased and biodegradable plastics in textiles 2019-2034, in 1,000 tons. 489
- Figure 121. Global production capacities for biobased and biodegradable plastics in electronics 2019-2034, in 1,000 tons. 490
- Figure 122. Biodegradable mulch films. 491
- Figure 123. Global production capacities for biobased and biodegradable plastics in agriculture 2019-2034, in 1,000 tons. 492
- Figure 124. Types of natural fibers. 496
- Figure 125. Absolut natural based fiber bottle cap. 499
- Figure 126. Adidas algae-ink tees. 499
- Figure 127. Carlsberg natural fiber beer bottle. 499
- Figure 128. Miratex watch bands. 500
- Figure 129. Adidas Made with Nature Ultraboost 22. 500
- Figure 130. PUMA RE:SUEDE sneaker 500
- Figure 131. Cotton production volume 2018-2034 (Million MT). 505
- Figure 132. Kapok production volume 2018-2034 (MT). 506
- Figure 133. Luffa cylindrica fiber. 507
- Figure 134. Jute production volume 2018-2034 (Million MT). 509
- Figure 135. Hemp fiber production volume 2018-2034 ( MT). 511
- Figure 136. Flax fiber production volume 2018-2034 (MT). 513
- Figure 137. Ramie fiber production volume 2018-2034 (MT). 514
- Figure 138. Kenaf fiber production volume 2018-2034 (MT). 515
- Figure 139. Sisal fiber production volume 2018-2034 (MT). 517
- Figure 140. Abaca fiber production volume 2018-2034 (MT). 518
- Figure 141. Coir fiber production volume 2018-2034 (MILLION MT). 520
- Figure 142. Banana fiber production volume 2018-2034 (MT). 521
- Figure 143. Pineapple fiber. 522
- Figure 144. A bag made with pineapple biomaterial from the H&M Conscious Collection 2019. 523
- Figure 145. Bamboo fiber production volume 2018-2034 (MILLION MT). 527
- Figure 146. Typical structure of mycelium-based foam. 528
- Figure 147. Commercial mycelium composite construction materials. 529
- Figure 148. Frayme Mylo™️. 529
- Figure 149. BLOOM masterbatch from Algix. 533
- Figure 150. Conceptual landscape of next-gen leather materials. 537
- Figure 151. Hemp fibers combined with PP in car door panel. 546
- Figure 152. Car door produced from Hemp fiber. 547
- Figure 153. Mercedes-Benz components containing natural fibers. 548
- Figure 154. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 555
- Figure 155. Coir mats for erosion control. 556
- Figure 156. Global fiber production in 2021, by fiber type, million MT and %. 559
- Figure 157. Global fiber production (million MT) to 2020-2034. 560
- Figure 158. Plant-based fiber production 2018-2034, by fiber type, MT. 561
- Figure 159. Animal based fiber production 2018-2034, by fiber type, million MT. 562
- Figure 160. High purity lignin. 563
- Figure 161. Lignocellulose architecture. 564
- Figure 162. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 565
- Figure 163. The lignocellulose biorefinery. 571
- Figure 164. LignoBoost process. 576
- Figure 165. LignoForce system for lignin recovery from black liquor. 577
- Figure 166. Sequential liquid-lignin recovery and purification (SLPR) system. 577
- Figure 167. A-Recovery+ chemical recovery concept. 579
- Figure 168. Schematic of a biorefinery for production of carriers and chemicals. 580
- Figure 169. Organosolv lignin. 583
- Figure 170. Hydrolytic lignin powder. 583
- Figure 171. Estimated consumption of lignin, 2019-2034 (000 MT). 587
- Figure 172. Schematic of WISA plywood home. 590
- Figure 173. Lignin based activated carbon. 592
- Figure 174. Lignin/celluose precursor. 594
- Figure 175. Pluumo. 609
- Figure 176. ANDRITZ Lignin Recovery process. 619
- Figure 177. Anpoly cellulose nanofiber hydrogel. 622
- Figure 178. MEDICELLU™. 622
- Figure 179. Asahi Kasei CNF fabric sheet. 632
- Figure 180. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 633
- Figure 181. CNF nonwoven fabric. 634
- Figure 182. Roof frame made of natural fiber. 644
- Figure 183. Beyond Leather Materials product. 648
- Figure 184. BIOLO e-commerce mailer bag made from PHA. 655
- Figure 185. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 656
- Figure 186. Fiber-based screw cap. 669
- Figure 187. formicobio™ technology. 690
- Figure 188. nanoforest-S. 692
- Figure 189. nanoforest-PDP. 692
- Figure 190. nanoforest-MB. 693
- Figure 191. sunliquid® production process. 701
- Figure 192. CuanSave film. 705
- Figure 193. Celish. 705
- Figure 194. Trunk lid incorporating CNF. 707
- Figure 195. ELLEX products. 709
- Figure 196. CNF-reinforced PP compounds. 709
- Figure 197. Kirekira! toilet wipes. 710
- Figure 198. Color CNF. 711
- Figure 199. Rheocrysta spray. 717
- Figure 200. DKS CNF products. 718
- Figure 201. Domsjö process. 720
- Figure 202. Mushroom leather. 730
- Figure 203. CNF based on citrus peel. 732
- Figure 204. Citrus cellulose nanofiber. 732
- Figure 205. Filler Bank CNC products. 745
- Figure 206. Fibers on kapok tree and after processing. 748
- Figure 207. TMP-Bio Process. 750
- Figure 208. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 751
- Figure 209. Water-repellent cellulose. 753
- Figure 210. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 755
- Figure 211. PHA production process. 757
- Figure 212. CNF products from Furukawa Electric. 758
- Figure 213. AVAPTM process. 768
- Figure 214. GreenPower+™ process. 769
- Figure 215. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 772
- Figure 216. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 775
- Figure 217. CNF gel. 782
- Figure 218. Block nanocellulose material. 783
- Figure 219. CNF products developed by Hokuetsu. 783
- Figure 220. Marine leather products. 786
- Figure 221. Inner Mettle Milk products. 790
- Figure 222. Kami Shoji CNF products. 803
- Figure 223. Dual Graft System. 805
- Figure 224. Engine cover utilizing Kao CNF composite resins. 806
- Figure 225. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 807
- Figure 226. Kel Labs yarn. 808
- Figure 227. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 812
- Figure 228. Lignin gel. 822
- Figure 229. BioFlex process. 826
- Figure 230. Nike Algae Ink graphic tee. 827
- Figure 231. LX Process. 831
- Figure 232. Made of Air's HexChar panels. 834
- Figure 233. TransLeather. 835
- Figure 234. Chitin nanofiber product. 840
- Figure 235. Marusumi Paper cellulose nanofiber products. 842
- Figure 236. FibriMa cellulose nanofiber powder. 843
- Figure 237. METNIN™ Lignin refining technology. 847
- Figure 238. IPA synthesis method. 850
- Figure 239. MOGU-Wave panels. 854
- Figure 240. CNF slurries. 855
- Figure 241. Range of CNF products. 855
- Figure 242. Reishi. 859
- Figure 243. Compostable water pod. 878
- Figure 244. Leather made from leaves. 879
- Figure 245. Nike shoe with beLEAF™. 879
- Figure 246. CNF clear sheets. 889
- Figure 247. Oji Holdings CNF polycarbonate product. 891
- Figure 248. Enfinity cellulosic ethanol technology process. 905
- Figure 249. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 910
- Figure 250. XCNF. 918
- Figure 251: Plantrose process. 920
- Figure 252. LOVR hemp leather. 924
- Figure 253. CNF insulation flat plates. 926
- Figure 254. Hansa lignin. 933
- Figure 255. Manufacturing process for STARCEL. 937
- Figure 256. Manufacturing process for STARCEL. 941
- Figure 257. 3D printed cellulose shoe. 950
- Figure 258. Lyocell process. 953
- Figure 259. North Face Spiber Moon Parka. 958
- Figure 260. PANGAIA LAB NXT GEN Hoodie. 959
- Figure 261. Spider silk production. 960
- Figure 262. Stora Enso lignin battery materials. 965
- Figure 263. 2 wt.% CNF suspension. 966
- Figure 264. BiNFi-s Dry Powder. 967
- Figure 265. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 967
- Figure 266. Silk nanofiber (right) and cocoon of raw material. 968
- Figure 267. Sulapac cosmetics containers. 970
- Figure 268. Sulzer equipment for PLA polymerization processing. 971
- Figure 269. Solid Novolac Type lignin modified phenolic resins. 972
- Figure 270. Teijin bioplastic film for door handles. 981
- Figure 271. Corbion FDCA production process. 989
- Figure 272. Comparison of weight reduction effect using CNF. 991
- Figure 273. CNF resin products. 995
- Figure 274. UPM biorefinery process. 997
- Figure 275. Vegea production process. 1002
- Figure 276. The Proesa® Process. 1003
- Figure 277. Goldilocks process and applications. 1005
- Figure 278. Visolis’ Hybrid Bio-Thermocatalytic Process. 1009
- Figure 279. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1012
- Figure 280. Worn Again products. 1017
- Figure 281. Zelfo Technology GmbH CNF production process. 1021
- Figure 282. Liquid biofuel production and consumption (in thousands of m3), 2000-2021. 1030
- Figure 283. Distribution of global liquid biofuel production in 2022. 1031
- Figure 284. SWOT analysis for biofuels. 1034
- Figure 285. Schematic of a biorefinery for production of carriers and chemicals. 1045
- Figure 286. Hydrolytic lignin powder. 1048
- Figure 287. SWOT analysis for energy crops in biofuels. 1055
- Figure 288. SWOT analysis for agricultural residues in biofuels. 1057
- Figure 289. SWOT analysis for Manure, sewage sludge and organic waste in biofuels. 1058
- Figure 290. SWOT analysis for forestry and wood waste in biofuels. 1060
- Figure 291. Range of biomass cost by feedstock type. 1061
- Figure 292. Regional production of biodiesel (billion litres). 1062
- Figure 293. SWOT analysis for biodiesel. 1065
- Figure 294. Flow chart for biodiesel production. 1069
- Figure 295. Biodiesel (B20) average prices, current and historical, USD/litre. 1076
- Figure 296. Global biodiesel consumption, 2010-2034 (M litres/year). 1077
- Figure 297. SWOT analysis for renewable iesel. 1081
- Figure 298. Global renewable diesel consumption, to 2033 (M litres/year). 1083
- Figure 299. SWOT analysis for Bio-aviation fuel. 1086
- Figure 300. Global bio-jet fuel consumption to 2033 (Million litres/year). 1091
- Figure 301. SWOT analysis biomethanol. 1095
- Figure 302. Renewable Methanol Production Processes from Different Feedstocks. 1096
- Figure 303. Production of biomethane through anaerobic digestion and upgrading. 1098
- Figure 304. Production of biomethane through biomass gasification and methanation. 1099
- Figure 305. Production of biomethane through the Power to methane process. 1099
- Figure 306. SWOT analysis for ethanol. 1102
- Figure 307. Ethanol consumption 2010-2034 (million litres). 1108
- Figure 308. Properties of petrol and biobutanol. 1110
- Figure 309. Biobutanol production route. 1110
- Figure 310. Biogas and biomethane pathways. 1113
- Figure 311. Overview of biogas utilization. 1115
- Figure 312. Biogas and biomethane pathways. 1116
- Figure 313. Schematic overview of anaerobic digestion process for biomethane production. 1118
- Figure 314. Schematic overview of biomass gasification for biomethane production. 1119
- Figure 315. SWOT analysis for biogas. 1120
- Figure 316. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1124
- Figure 317. SWOT analysis for biohydrogen. 1126
- Figure 318. Waste plastic production pathways to (A) diesel and (B) gasoline 1133
- Figure 319. Schematic for Pyrolysis of Scrap Tires. 1134
- Figure 320. Used tires conversion process. 1135
- Figure 321. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1138
- Figure 322. Overview of biogas utilization. 1139
- Figure 323. Biogas and biomethane pathways. 1140
- Figure 324. SWOT analysis for chemical recycling of biofuels. 1143
- Figure 325. Process steps in the production of electrofuels. 1144
- Figure 326. Mapping storage technologies according to performance characteristics. 1145
- Figure 327. Production process for green hydrogen. 1148
- Figure 328. SWOT analysis for E-fuels. 1149
- Figure 329. E-liquids production routes. 1150
- Figure 330. Fischer-Tropsch liquid e-fuel products. 1151
- Figure 331. Resources required for liquid e-fuel production. 1151
- Figure 332. Levelized cost and fuel-switching CO2 prices of e-fuels. 1156
- Figure 333. Cost breakdown for e-fuels. 1158
- Figure 334. Pathways for algal biomass conversion to biofuels. 1160
- Figure 335. SWOT analysis for algae-derived biofuels. 1161
- Figure 336. Algal biomass conversion process for biofuel production. 1163
- Figure 337. Classification and process technology according to carbon emission in ammonia production. 1166
- Figure 338. Green ammonia production and use. 1167
- Figure 339. Schematic of the Haber Bosch ammonia synthesis reaction. 1169
- Figure 340. Schematic of hydrogen production via steam methane reformation. 1169
- Figure 341. SWOT analysis for green ammonia. 1171
- Figure 342. Estimated production cost of green ammonia. 1176
- Figure 343. Projected annual ammonia production, million tons. 1177
- Figure 344. Bio-oil upgrading/fractionation techniques. 1182
- Figure 345. SWOT analysis for bio-oils. 1183
- Figure 346. ANDRITZ Lignin Recovery process. 1195
- Figure 347. FBPO process 1208
- Figure 348. Direct Air Capture Process. 1212
- Figure 349. CRI process. 1214
- Figure 350. Colyser process. 1221
- Figure 351. ECFORM electrolysis reactor schematic. 1226
- Figure 352. Dioxycle modular electrolyzer. 1227
- Figure 353. Domsjö process. 1228
- Figure 354. FuelPositive system. 1237
- Figure 355. INERATEC unit. 1252
- Figure 356. Infinitree swing method. 1253
- Figure 357. Enfinity cellulosic ethanol technology process. 1283
- Figure 358: Plantrose process. 1290
- Figure 359. O12 Reactor. 1308
- Figure 360. Sunglasses with lenses made from CO2-derived materials. 1309
- Figure 361. CO2 made car part. 1309
- Figure 362. The Velocys process. 1312
- Figure 363. The Proesa® Process. 1314
- Figure 364. Goldilocks process and applications. 1316
- Figure 365. Paints and coatings industry by market segmentation 2019-2020. 1322
- Figure 366. PHA family. 1342
- Figure 367: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 1346
- Figure 368: Scale of cellulose materials. 1347
- Figure 369. Nanocellulose preparation methods and resulting materials. 1348
- Figure 370: Relationship between different kinds of nanocelluloses. 1350
- Figure 371. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1357
- Figure 372: CNC slurry. 1358
- Figure 373. High purity lignin. 1361
- Figure 374. BLOOM masterbatch from Algix. 1366
- Figure 375. Global market revenues for biobased paints and coatings, 2018-2034 (billions USD). 1368
- Figure 376. Market revenues for biobased paints and coatings, 2018-2034 (billions USD), conservative estimate. 1369
- Figure 377. Market revenues for biobased paints and coatings, 2018-2034 (billions USD), high 1370
- Figure 378. Dulux Better Living Air Clean Biobased. 1372
- Figure 379: NCCTM Process. 1394
- Figure 380: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include: 1394
- Figure 381. Cellugy materials. 1396
- Figure 382. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right). 1400
- Figure 383. Rheocrysta spray. 1406
- Figure 384. DKS CNF products. 1407
- Figure 385. Domsjö process. 1408
- Figure 386. CNF gel. 1424
- Figure 387. Block nanocellulose material. 1424
- Figure 388. CNF products developed by Hokuetsu. 1425
- Figure 389. BioFlex process. 1438
- Figure 390. Marusumi Paper cellulose nanofiber products. 1441
- Figure 391: Fluorene cellulose ® powder. 1460
- Figure 392. XCNF. 1465
- Figure 393. Spider silk production. 1474
- Figure 394. CNF dispersion and powder from Starlite. 1476
- Figure 395. 2 wt.% CNF suspension. 1480
- Figure 396. BiNFi-s Dry Powder. 1480
- Figure 397. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 1481
- Figure 398. Silk nanofiber (right) and cocoon of raw material. 1481
- Figure 399. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1486
- Figure 400. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film. 1487
- Figure 401. Bioalkyd products. 1491
- Figure 402. Carbon emissions by sector. 1492
- Figure 403. Overview of CCUS market 1494
- Figure 404. Pathways for CO2 use. 1495
- Figure 405. Regional capacity share 2022-2030. 1497
- Figure 406. Global investment in carbon capture 2010-2022, millions USD. 1503
- Figure 407. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 1508
- Figure 408. CCS deployment projects, historical and to 2035. 1509
- Figure 409. Existing and planned CCS projects. 1518
- Figure 410. CCUS Value Chain. 1518
- Figure 411. Schematic of CCUS process. 1520
- Figure 412. Pathways for CO2 utilization and removal. 1521
- Figure 413. A pre-combustion capture system. 1527
- Figure 414. Carbon dioxide utilization and removal cycle. 1531
- Figure 415. Various pathways for CO2 utilization. 1532
- Figure 416. Example of underground carbon dioxide storage. 1533
- Figure 417. Transport of CCS technologies. 1534
- Figure 418. Railroad car for liquid CO₂ transport 1537
- Figure 419. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector. 1539
- Figure 420. Cost of CO2 transported at different flowrates 1540
- Figure 421. Cost estimates for long-distance CO2 transport. 1541
- Figure 422. CO2 capture and separation technology. 1542
- Figure 423. Global capacity of point-source carbon capture and storage facilities. 1545
- Figure 424. Global carbon capture capacity by CO2 source, 2021. 1546
- Figure 425. Global carbon capture capacity by CO2 source, 2030. 1546
- Figure 426. Global carbon capture capacity by CO2 endpoint, 2021 and 2030. 1547
- Figure 427. Post-combustion carbon capture process. 1550
- Figure 428. Postcombustion CO2 Capture in a Coal-Fired Power Plant. 1551
- Figure 429. Oxy-combustion carbon capture process. 1552
- Figure 430. Liquid or supercritical CO2 carbon capture process. 1553
- Figure 431. Pre-combustion carbon capture process. 1554
- Figure 432. Amine-based absorption technology. 1558
- Figure 433. Pressure swing absorption technology. 1562
- Figure 434. Membrane separation technology. 1564
- Figure 435. Liquid or supercritical CO2 (cryogenic) distillation. 1565
- Figure 436. Process schematic of chemical looping. 1566
- Figure 437. Calix advanced calcination reactor. 1567
- Figure 438. Fuel Cell CO2 Capture diagram. 1568
- Figure 439. Microalgal carbon capture. 1569
- Figure 440. Cost of carbon capture. 1574
- Figure 441. CO2 capture capacity to 2030, MtCO2. 1575
- Figure 442. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030. 1576
- Figure 443. Bioenergy with carbon capture and storage (BECCS) process. 1578
- Figure 444. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 1581
- Figure 445. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 1582
- Figure 446. DAC technologies. 1584
- Figure 447. Schematic of Climeworks DAC system. 1585
- Figure 448. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 1586
- Figure 449. Flow diagram for solid sorbent DAC. 1587
- Figure 450. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 1588
- Figure 451. Global capacity of direct air capture facilities. 1593
- Figure 452. Global map of DAC and CCS plants. 1598
- Figure 453. Schematic of costs of DAC technologies. 1601
- Figure 454. DAC cost breakdown and comparison. 1602
- Figure 455. Operating costs of generic liquid and solid-based DAC systems. 1604
- Figure 456. Schematic of biochar production. 1609
- Figure 457. CO2 non-conversion and conversion technology, advantages and disadvantages. 1612
- Figure 458. Applications for CO2. 1615
- Figure 459. Cost to capture one metric ton of carbon, by sector. 1615
- Figure 460. Life cycle of CO2-derived products and services. 1618
- Figure 461. Co2 utilization pathways and products. 1621
- Figure 462. Plasma technology configurations and their advantages and disadvantages for CO2 conversion. 1625
- Figure 463. LanzaTech gas-fermentation process. 1630
- Figure 464. Schematic of biological CO2 conversion into e-fuels. 1631
- Figure 465. Econic catalyst systems. 1634
- Figure 466. Mineral carbonation processes. 1636
- Figure 467. Conversion route for CO2-derived fuels and chemical intermediates. 1639
- Figure 468. Conversion pathways for CO2-derived methane, methanol and diesel. 1640
- Figure 469. CO2 feedstock for the production of e-methanol. 1641
- Figure 470. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 1643
- Figure 471. Audi synthetic fuels. 1645
- Figure 472. Conversion of CO2 into chemicals and fuels via different pathways. 1648
- Figure 473. Conversion pathways for CO2-derived polymeric materials 1650
- Figure 474. Conversion pathway for CO2-derived building materials. 1654
- Figure 475. Schematic of CCUS in cement sector. 1655
- Figure 476. Carbon8 Systems’ ACT process. 1658
- Figure 477. CO2 utilization in the Carbon Cure process. 1659
- Figure 478. Algal cultivation in the desert. 1664
- Figure 479. Example pathways for products from cyanobacteria. 1665
- Figure 480. Typical Flow Diagram for CO2 EOR. 1669
- Figure 481. Large CO2-EOR projects in different project stages by industry. 1671
- Figure 482. Carbon mineralization pathways. 1675
- Figure 483. CO2 Storage Overview - Site Options 1678
- Figure 484. CO2 injection into a saline formation while producing brine for beneficial use. 1682
- Figure 485. Subsurface storage cost estimation. 1686
- Figure 486. Air Products production process. 1691
- Figure 487. Aker carbon capture system. 1693
- Figure 488. ALGIECEL PhotoBioReactor. 1696
- Figure 489. Schematic of carbon capture solar project. 1700
- Figure 490. Aspiring Materials method. 1701
- Figure 491. Aymium’s Biocarbon production. 1704
- Figure 492. Carbonminer technology. 1719
- Figure 493. Carbon Blade system. 1723
- Figure 494. CarbonCure Technology. 1729
- Figure 495. Direct Air Capture Process. 1731
- Figure 496. CRI process. 1734
- Figure 497. PCCSD Project in China. 1748
- Figure 498. Orca facility. 1750
- Figure 499. Process flow scheme of Compact Carbon Capture Plant. 1754
- Figure 500. Colyser process. 1755
- Figure 501. ECFORM electrolysis reactor schematic. 1761
- Figure 502. Dioxycle modular electrolyzer. 1762
- Figure 503. Fuel Cell Carbon Capture. 1779
- Figure 504. Topsoe's SynCORTM autothermal reforming technology. 1785
- Figure 505. Carbon Capture balloon. 1787
- Figure 506. Holy Grail DAC system. 1789
- Figure 507. INERATEC unit. 1794
- Figure 508. Infinitree swing method. 1795
- Figure 509. Audi/Krajete unit. 1800
- Figure 510. Made of Air's HexChar panels. 1810
- Figure 511. Mosaic Materials MOFs. 1818
- Figure 512. Neustark modular plant. 1822
- Figure 513. OCOchem’s Carbon Flux Electrolyzer. 1828
- Figure 514. ZerCaL™ process. 1829
- Figure 515. CCS project at Arthit offshore gas field. 1839
- Figure 516. RepAir technology. 1843
- Figure 517. Soletair Power unit. 1853
- Figure 518. Sunfire process for Blue Crude production. 1859
- Figure 519. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 1862
- Figure 520. O12 Reactor. 1869
- Figure 521. Sunglasses with lenses made from CO2-derived materials. 1869
- Figure 522. CO2 made car part. 1869
- Figure 523. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 1877
- Figure 524. Current management systems for waste plastics. 1879
- Figure 525. Global polymer demand 2022-2040, segmented by technology, million metric tons. 1891
- Figure 526. Global demand by recycling process, 2020-2035, million metric tons. 1892
- Figure 527. Market map for advanced recycling. 1894
- Figure 528. Value chain for advanced recycling market. 1895
- Figure 529. Schematic layout of a pyrolysis plant. 1899
- Figure 530. Waste plastic production pathways to (A) diesel and (B) gasoline 1904
- Figure 531. Schematic for Pyrolysis of Scrap Tires. 1908
- Figure 532. Used tires conversion process. 1909
- Figure 533. SWOT analysis-pyrolysis for advanced recycling. 1910
- Figure 534. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1913
- Figure 535. Overview of biogas utilization. 1915
- Figure 536. Biogas and biomethane pathways. 1916
- Figure 537. SWOT analysis-gasification for advanced recycling. 1918
- Figure 538. SWOT analysis-dissoluton for advanced recycling. 1921
- Figure 539. Products obtained through the different solvolysis pathways of PET, PU, and PA. 1923
- Figure 540. SWOT analysis-Hydrolysis for advanced chemical recycling. 1926
- Figure 541. SWOT analysis-Enzymolysis for advanced chemical recycling. 1928
- Figure 542. SWOT analysis-Methanolysis for advanced chemical recycling. 1930
- Figure 543. SWOT analysis-Glycolysis for advanced chemical recycling. 1933
- Figure 544. SWOT analysis-Aminolysis for advanced chemical recycling. 1934
- Figure 545. NewCycling process. 1951
- Figure 546. ChemCyclingTM prototypes. 1955
- Figure 547. ChemCycling circle by BASF. 1955
- Figure 548. Recycled carbon fibers obtained through the R3FIBER process. 1957
- Figure 549. Cassandra Oil process. 1968
- Figure 550. CuRe Technology process. 1976
- Figure 551. MoReTec. 2010
- Figure 552. Chemical decomposition process of polyurethane foam. 2012
- Figure 553. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 2025
- Figure 554. Easy-tear film material from recycled material. 2040
- Figure 555. Polyester fabric made from recycled monomers. 2044
- Figure 556. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right). 2054
- Figure 557. Teijin Frontier Co., Ltd. Depolymerisation process. 2058
- Figure 558. The Velocys process. 2065
- Figure 559. The Proesa® Process. 2066
- Figure 560. Worn Again products. 2067
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.