The Global Market for Shape Memory Materials

0

Shape memory materials are a widely-investigated class of smart materials capable of changing from one predetermined shape to another in response to a stimulus. The demand for structures capable of autonomously adapting their shape according to specific varying conditions has led to the development of shape memory materials such as Shape Memory Alloys (SMA) and Shape Memory Polymers (SMP).

Shape Memory Alloys (SMA) are able to recover their initial shape after a deformation has occurred, when subjected to particular thermal conditions. They possess superelastic behavior, which allows large deformations with limited or no residual strain, and a high power-to-weight ratio.  Other properties include biocompatibility, high corrosion resistance, high wear resistance and high anti-fatigue.

SMAs are used in couplings, actuators and smart materials and are particularly suitable for adaptive structures in electrical components, construction, robotics, aerospace and automotive industries. Systems based on SMA actuators are already in use in valves and drives, where they offer lightweight, solid state options to habitual actuators such as hydraulic, pneumatic and motor based systems.

SMA are used in many other applications such as medical, controllers for hot water valves in showers, petroleum industry, vibration dampers, ball bearings, sensors, miniature grippers, micro valves, pumps, landing gears, eye glass frames, material for helicopter blades, sprinklers in fine alarm systems, packaging devices for electronic materials, dental materials, etc.

Shape memory polymers (SMPs) are a programmable (multi)stimuli-responsive polymers that change shape and stiffness through a thermal transition such as a glass transition. SMPs can recover their initial shape upon direct or Joule heating, radiation and laser heating, microwaves, pressure, moisture, solvent or solvent vapours and change in the pH values. Shape-memory polymers differ from SMAs by their glass transition or melting transition from a hard to a soft phase which is responsible for the shape-memory effect. In shape-memory alloys martensitic/austenitic transitions are responsible for the shape-memory effect. There are numerous advantages that make SMPs more attractive than shape memory alloys. 

The Global Market for Shape Memory Materials includes:

  • Applications and markets for shape memory alloys and shape memory polymers.
  • Analysis of shape memory materials by types and properties.
  • Patent analysis.
  • Assessment of economic prospects of the market for shape memory materials.
  • Market trends impacting the market for shape memory materials.
  • Main applications and markets for shape memory materials. Markets covered include biomedical, actuators across multiple markets, electronics, consumer goods, construction, tires, textiles, aerospace, soft robotics, automotive etc.
  • Shape memory market demand forecast (revenues), by type, market and region 2015-2030.
  • Shape memory materials producer profiles. Companies profiled include Awaji Materia Co., Ltd., ATI, Cambridge Mechatronics Limited ,  Dynalloy, Inc., Furukawa Electric Group, Maruho Hatsujyo Kogyo Co., Ltd., Nippon, re-fer AG, Shape Memory Medical, Inc., SAES Group, Sun Co. Tracking, VenoStent etc.

Published September 2019 | 90 pages, 22 tables, 11 figures | Table of contents

The Global Market for Shape Memory Materials
The Global Market for Shape Memory Materials
PDF download.
The Global Market for Shape Memory Materials
The Global Market for Shape Memory Materials
Print edition (including tracked delivery).
The Global Market for Shape Memory Materials
The Global Market for Shape Memory Materials
PDF and print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

TABLE OF CONTENTS

1        RESEARCH METHODOLOGY…………………………………………………………………………………………………….. 8

2        EXECUTIVE SUMMARY…………………………………………………………………………………………………………….. 9

  • 2.1     MARKET DRIVERS……………………………………………………………………………………………………………… 11
  • 2.2     APPLICATIONS…………………………………………………………………………………………………………………… 12
  • 2.3     MARKET CHALLENGES……………………………………………………………………………………………………….. 14

3        TYPES…………………………………………………………………………………………………………………………………… 15

  • 3.1     SHAPE MEMORY ALLOYS (SMA)………………………………………………………………………………………….. 15
    • 3.1.1       Nickel-Titanium (Ni-Ti) alloys………………………………………………………………………………………….. 17
    • 3.1.2       Copper-based SMAs…………………………………………………………………………………………………….. 19
    • 3.1.3       Other SMAs……………………………………………………………………………………………………………….. 20
    • 3.1.4       Nickel-free SMAs…………………………………………………………………………………………………………. 20
    • 3.1.5       SMA actuators…………………………………………………………………………………………………………….. 21
    • 3.1.6       Comparison of shape memory alloy types-advantages and disadvantages……………………………….. 23
  • 3.2     SHAPE MEMORY POLYMERS (SMP)……………………………………………………………………………………… 24
    • 3.2.1       Shape memory polyurethane films…………………………………………………………………………………… 25
    • 3.2.2       Polyhedral oligosilsesquioxane (POSS) shape memory………………………………………………………… 26
    • 3.2.3       Shape memory hydrogels………………………………………………………………………………………………. 26
    • 3.2.4       Diaplex………………………………………………………………………………………………………………………. 27
    • 3.2.5       Carbon nanotubes SMPs………………………………………………………………………………………………. 28
    • 3.2.6       Graphene SMPs………………………………………………………………………………………………………….. 29

4        SHAPE MEMORY PATENTING………………………………………………………………………………………………….. 30

5        MARKETS AND APPLICATIONS……………………………………………………………………………………………….. 33

  • 5.1     BIOMEDICAL……………………………………………………………………………………………………………………… 33
    • 5.1.1       Stents……………………………………………………………………………………………………………………….. 34
    • 5.1.2       Dental braces……………………………………………………………………………………………………………… 35
    • 5.1.3       Coronary duct occluder…………………………………………………………………………………………………. 35
    • 5.1.4       Prosthetics/Orthotics…………………………………………………………………………………………………….. 36
    • 5.1.5       Surgical devices………………………………………………………………………………………………………….. 37
    • 5.1.6       Sutures……………………………………………………………………………………………………………………… 37
    • 5.1.7       Sensors…………………………………………………………………………………………………………………….. 38
    • 5.1.8       Tissue engineering……………………………………………………………………………………………………….. 38
  • 5.2     ELECTRONICS…………………………………………………………………………………………………………………… 40
    • 5.2.1       Flexible electronics………………………………………………………………………………………………………. 40
    • 5.2.2       Displays…………………………………………………………………………………………………………………….. 41
    • 5.2.3       3D printed shape memory alloys……………………………………………………………………………………… 41
  • 5.3     CONSUMER GOODS…………………………………………………………………………………………………………… 43
    • 5.3.1       Eyeglass frames………………………………………………………………………………………………………….. 43
    • 5.3.2       Home appliances…………………………………………………………………………………………………………. 44
    • 5.3.3       Toys…………………………………………………………………………………………………………………………. 44
  • 5.4     CONSTRUCTION………………………………………………………………………………………………………………… 45
    • 5.4.1       Structural engineering…………………………………………………………………………………………………… 45
    • 5.4.2       Vibration dampers………………………………………………………………………………………………………… 46
  • 5.5     TIRES……………………………………………………………………………………………………………………………….. 47
    • 5.5.1       Shape memory tires……………………………………………………………………………………………………… 47
  • 5.6     AEROSPACE……………………………………………………………………………………………………………………… 48
    • 5.6.1       SMA actuators…………………………………………………………………………………………………………….. 49
    • 5.6.2       SMA composites………………………………………………………………………………………………………….. 49
    • 5.6.3       Space wheel……………………………………………………………………………………………………………….. 50
  • 5.7     TEXTILES………………………………………………………………………………………………………………………….. 51
    • 5.7.1       Electronic textiles…………………………………………………………………………………………………………. 52
    • 5.7.2       Medical textiles……………………………………………………………………………………………………………. 52
    • 5.7.3       Insulating fabric…………………………………………………………………………………………………………… 53
  • 5.8     SOFT ROBOTICS………………………………………………………………………………………………………………… 55
    • 5.8.1       Soft actuators……………………………………………………………………………………………………………… 56
  • 5.9     AUTOMOTIVE…………………………………………………………………………………………………………………….. 56
    • 5.9.1       Actuators……………………………………………………………………………………………………………………. 57
    • 5.9.2       Shape memory polymers……………………………………………………………………………………………….. 57
  • 5.10        OTHER MARKETS………………………………………………………………………………………………………….. 57
    • 5.10.1     Water mixing valves……………………………………………………………………………………………………… 58
    • 5.10.2     Fire dampers………………………………………………………………………………………………………………. 59
    • 5.10.3     Hot water valves………………………………………………………………………………………………………….. 60
    • 5.10.4     Oil and gas…………………………………………………………………………………………………………………. 60
    • 5.10.5     Shape memory screws………………………………………………………………………………………………….. 60
    • 5.10.6     Solar panels……………………………………………………………………………………………………………….. 61

6        GLOBAL REVENUES AND REGIONAL MARKETS……………………………………………………………………….. 62

  • 6.1     Global market to 2030, total revenues (USD)……………………………………………………………………………… 62
  • 6.2     Global market to 2030, by market…………………………………………………………………………………………….. 63
  • 6.3     Global market to 2030, by region……………………………………………………………………………………………… 65
    • 6.3.1       Shape memory market in North America…………………………………………………………………………… 67
    • 6.3.2       Shape memory market in Europe…………………………………………………………………………………….. 67
    • 6.3.3       Shape memory market in Japan……………………………………………………………………………………… 67
    • 6.3.4       Shape memory market in China………………………………………………………………………………………. 68

7        COMPANY PROFILES……………………………………………………………………………………………………………… 69 (24 COMPANY PROFILES INCLUDING PRODUCTS AND TARGET MARKETS)

8        REFERENCES………………………………………………………………………………………………………………………… 88

TABLES

  • Table 1. Market drivers for the use of shape memory materials…………………………………………………………………… 11
  • Table 2. Applications and market for shape memory materials……………………………………………………………………. 12
  • Table 3. Market challenges for shape memory materials……………………………………………………………………………. 14
  • Table 4. Properties of shape memory alloys……………………………………………………………………………………………. 15
  • Table 5. Types of shape memory alloys, by materials……………………………………………………………………………….. 15
  • Table 6. Nitinol properties…………………………………………………………………………………………………………………… 17
  • Table 7. Applications of shape memory materials in actuators…………………………………………………………………….. 21
  • Table 8. Comparison of shape memory types…………………………………………………………………………………………. 23
  • Table 9. Main shape memory materials patent assignees………………………………………………………………………….. 31
  • Table 10. Location of shape memory materials patent filings 2008-2018……………………………………………………….. 31
  • Table 11. Applications of shape memory materials in medical and stage of development………………………………….. 33
  • Table 12. Applications of shape memory materials in electronics and stage of development……………………………… 40
  • Table 13. Applications of shape memory materials in consumer goods and stage of development………………………. 43
  • Table 14. Applications of shape memory materials in construction and stage of development……………………………. 45
  • Table 15. Applications of shape memory materials in aerospace and stage of development………………………………. 48
  • Table 16. Applications of shape memory materials in textiles and stage of development…………………………………… 51
  • Table 17. Applications of shape memory materials in soft robotics and stage of development……………………………. 55
  • Table 18. Applications of shape memory materials in automotive and stage of development……………………………… 56
  • Table 19. Applications of shape memory materials in other markets and stage of development………………………….. 58
  • Table 20. Global market for shape memory materials, total, revenues (USD) 2015-2030………………………………….. 62
  • Table 21. Global market for shape memory materials, by market, revenues (USD) 2015-2030…………………………… 64
  • Table 22. Global market for shape memory materials, by region, revenues (USD) 2015-2030……………………………. 66

FIGURES

  • Figure 1. Shape memory materials……………………………………………………………………………………………………….. 14
  • Figure 2. Phase transformation process for SMAs……………………………………………………………………………………. 19
  • Figure 3. Shape memory cycle…………………………………………………………………………………………………………….. 24
  • Figure 4. Shape memory materials patent applications 2001-2018………………………………………………………………. 30
  • Figure 5.  Stent based on film polyurethane shape memory polymer……………………………………………………………. 34
  • Figure 6. Shape memory dental braces…………………………………………………………………………………………………. 35
  • Figure 7: Self-healing shape memory polymer patent schematic…………………………………………………………………. 41
  • Figure 8. SMA incorporated into eyeglass frames…………………………………………………………………………………….. 43
  • Figure 9. Global market for shape memory materials, total, revenues (USD) 2015-2030…………………………………… 63
  • Figure 10. Global market for shape memory materials, by market, revenues (USD) 2015-2030………………………….. 64
  • Figure 11. Global market for shape memory materials, by region, revenues (USD) 2015-2030…………………………… 67