The Global Market for Biofuels 2024-2035

0

Biodiesel, renewable diesel, bio-jet fuels, bio-naphtha, biomethanol, ethanol, biobutanol, biogas, biosyngas, biohydrogen, biofuel from plastic waste & used tires, biofuels from carbon capture, chemical recycling based biofuels, electrofuels, bio-oils, algae-derived biofuels, green ammonia, refuse-derived biofuels.

  • Published: February 2024
  • Pages: 426
  • Tables: 96
  • Figures: 114

 

The biofuels market has grown significantly as nations and companies pursue renewable, low carbon alternatives for replacing petroleum across transportation applications like passenger vehicles, aviation, marine and heavy freight, while serving broader circular economy sustainability aims. Continued growth is forecast driven by supportive government policies, rising adoption of biofuels blends in Asia and Americas markets, innovations in feedstocks and production methods, and increasing cost-competitiveness in light of petroleum volatility and environmental motivations.

The Global Market for Biofuels 2024-2035 provides a comprehensive analysis of the global biofuels market and emerging alternatives through 2035. It benchmarks over 15 industry drivers including energy security, emissions compliance, new revenue opportunities, rural development, landfill diversion and waste monetization, promoting adoption of various solid, liquid and gaseous biofuels derived from diverse biomass, waste, algal and carbon capture technologies. Granular feedstock, process technology and application assessments provide insights for stakeholders to position across the evolving biofuels value chain. The report analyses over a dozen types of biofuels utilizing distinct feedstocks and production methods suitable for specific applications spanning road transport, aviation, marine, rail, off-road vehicles, power generation and more.

Granular 11-year volume forecasts are provided as well as detailed impact analysis of circular economy transition, feedstock, process innovation, policy, pricing outlooks and competing energy technologies affecting biofuels growth. Types covered include:

Market analysis including key players, end use markets, production processes, costs, production capacities, market demand for biofuels including:

  • biodiesel
  • renewable diesel
  • bio-jet fuels
  • bio-naphtha
  • biomethanol
  • ethanol
  • biobutanol
  • biogas
  • biosyngas
  • biohydrogen
  • biofuel from plastic waste & used tires
  • biofuels from carbon capture
  • chemical recycling based biofuels
  • electrofuels
  • bio-oils
  • algae-derived biofuels
  • green ammonia 
  • refuse-derived biofuels.

 

Report contents include:

  • Industry Developments 2022-2024: Key mergers, partnerships, funding, policy updates, pricing shifts
  • Biofuels Market Outlook: Definition, role, types - solid, liquid, gaseous; blends, performance relative to petrol/diesel
  • Feedstocks Analysis: Wide range assessed - Energy crops, lignocellulosic waste, algae, municipal waste, forestry residue etc.
  • Production Pathways: - anaerobic digestion, gasification, pyrolysis, Fischer-Tropsch, hydrocracking etc creating variety of biofuels
  • Biodiesel/Renewable Diesel: Leading liquid biofuels currently. Market drivers, regional dynamics, forecast to 2035
  • Emerging Options: Biojet fuel, biomethanol, bio-oils, biosyngas, electrofuels etc – industry status, challenges, future demand potential
  • Sector Applications: Detailed biofuel use in road transport, aviation, marine, off-road vehicles, power generation – outlook by vertical
  • Regional Market Analysis: Historic and forecasted biofuels demand from 2020-2035 across America, Asia, Europe, ROW
  • Prices Trends: Biofuels pricing benchmarking - current vs projections by type through 2035 – impact on adoption economics
  • Sustainability Metrics: Life cycle emissions, circularity - comparison vs alternatives like solar, wind, EVs, hydrogen
  • Company Profiles: 200+ leading biofuels producers and technology providers. Companies profiled include BTG Bioliquids, Byogy Renewables, Caphenia, Enerkem, Electro-Active Technologies Inc., Eni S.p.A., Ensyn, FORGE Hydrocarbons Corporation, Fulcrum Bioenergy, Genecis Bioindustries, Gevo, Haldor Topsoe, Infinium Electrofuels,  Kvasir Technologies, Opera Bioscience, Reverion GmbH, Steeper Energy,  SunFire GmbH, Vertus Energy, Viridos, Inc. and WasteFuel. (Full list of companies profiled in table of contents).
  • Conclusions: Key findings, trends 2025-2035 outlook, commercialization roadmaps, opportunities by biofuel type and geography.

 

Download table of contents (PDF)

1              RESEARCH METHODOLOGY         24

 

2              EXECUTIVE SUMMARY   25

  • 2.1          Comparison to fossil fuels            25
  • 2.2          Role in the circular economy       26
  • 2.3          Market drivers  26
  • 2.4          Market challenges           27
  • 2.5          Liquid biofuels market   28
    • 2.5.1      Liquid biofuel production and consumption (in thousands of m3), 2000-2022         28
    • 2.5.2      Liquid biofuels market 2020-2035, by type and production.           29

 

3              INDUSTRY DEVELOPMENTS 2022-2024    31

 

4              BIOFUELS            34

  • 4.1          Overview            34
  • 4.2          The global biofuels market           35
    • 4.2.1      Diesel substitutes and alternatives           36
    • 4.2.2      Gasoline substitutes and alternatives      37
  • 4.3          SWOT analysis: Biofuels market 38
  • 4.4          Comparison of biofuel costs 2023, by type            39
  • 4.5          Types    40
    • 4.5.1      Solid Biofuels     40
    • 4.5.2      Liquid Biofuels  41
    • 4.5.3      Gaseous Biofuels             41
    • 4.5.4      Conventional Biofuels    42
    • 4.5.5      Advanced Biofuels           43
  • 4.6          Feedstocks         44
    • 4.6.1      First-generation (1-G)    46
    • 4.6.2      Second-generation (2-G)              47
      • 4.6.2.1   Lignocellulosic wastes and residues         48
      • 4.6.2.2   Biorefinery lignin              49
    • 4.6.3      Third-generation (3-G)  53
      • 4.6.3.1   Algal biofuels     53
        • 4.6.3.1.1               Properties           54
        • 4.6.3.1.2               Advantages        54
    • 4.6.4      Fourth-generation (4-G) 56
    • 4.6.5      Advantages and disadvantages, by generation    56
    • 4.6.6      Energy crops      58
      • 4.6.6.1   Feedstocks         58
      • 4.6.6.2   SWOT analysis   58
    • 4.6.7      Agricultural residues      59
      • 4.6.7.1   Feedstocks         59
      • 4.6.7.2   SWOT analysis   60
    • 4.6.8      Manure, sewage sludge and organic waste           61
      • 4.6.8.1   Processing pathways      61
      • 4.6.8.2   SWOT analysis   62
    • 4.6.9      Forestry and wood waste             63
      • 4.6.9.1   Feedstocks         63
      • 4.6.9.2   SWOT analysis   64
    • 4.6.10    Feedstock costs 65

 

5              HYDROCARBON BIOFUELS            66

  • 5.1          Biodiesel              66
    • 5.1.1      Biodiesel by generation 67
    • 5.1.2      SWOT analysis   68
    • 5.1.3      Production of biodiesel and other biofuels            70
      • 5.1.3.1   Pyrolysis of biomass        70
      • 5.1.3.2   Vegetable oil transesterification 73
      • 5.1.3.3   Vegetable oil hydrogenation (HVO)         74
        • 5.1.3.3.1               Production process         75
      • 5.1.3.4   Biodiesel from tall oil      76
      • 5.1.3.5   Fischer-Tropsch BioDiesel             76
      • 5.1.3.6   Hydrothermal liquefaction of biomass    78
      • 5.1.3.7   CO2 capture and Fischer-Tropsch (FT)     79
      • 5.1.3.8   Dymethyl ether (DME)   79
    • 5.1.4      Prices    80
    • 5.1.5      Global production and consumption        81
  • 5.2          Renewable diesel            84
    • 5.2.1      Production          84
    • 5.2.2      SWOT analysis   85
    • 5.2.3      Global consumption       86
    • 5.2.4      Prices    88
  • 5.3          Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)      89
    • 5.3.1      Description         89
    • 5.3.2      SWOT analysis   89
    • 5.3.3      Global production and consumption        90
    • 5.3.4      Production pathways     91
    • 5.3.5      Prices    93
    • 5.3.6      Bio-aviation fuel production capacities    94
    • 5.3.7      Challenges          94
    • 5.3.8      Global consumption       95
  • 5.4          Bio-naphtha       97
    • 5.4.1      Overview            97
    • 5.4.2      SWOT analysis   98
    • 5.4.3      Markets and applications              99
    • 5.4.4      Prices    100
    • 5.4.5      Production capacities, by producer, current and planned               101
    • 5.4.6      Production capacities, total (tonnes), historical, current and planned        102

 

6              ALCOHOL FUELS               103

  • 6.1          Biomethanol      103
    • 6.1.1      SWOT analysis   103
    • 6.1.2      Methanol-to gasoline technology             104
      • 6.1.2.1   Production processes     105
        • 6.1.2.1.1               Anaerobic digestion        106
        • 6.1.2.1.2               Biomass gasification        106
        • 6.1.2.1.3               Power to Methane          107
  • 6.2          Ethanol 108
    • 6.2.1      Technology description 108
    • 6.2.2      1G Bio-Ethanol  109
    • 6.2.3      SWOT analysis   109
    • 6.2.4      Ethanol to jet fuel technology     110
    • 6.2.5      Methanol from pulp & paper production               111
    • 6.2.6      Sulfite spent liquor fermentation              111
    • 6.2.7      Gasification        112
      • 6.2.7.1   Biomass gasification and syngas fermentation    112
      • 6.2.7.2   Biomass gasification and syngas thermochemical conversion        112
    • 6.2.8      CO2 capture and alcohol synthesis           113
    • 6.2.9      Biomass hydrolysis and fermentation     113
      • 6.2.9.1   Separate hydrolysis and fermentation    113
      • 6.2.9.2   Simultaneous saccharification and fermentation (SSF)     114
      • 6.2.9.3   Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)             114
      • 6.2.9.4   Simultaneous saccharification and co-fermentation (SSCF)            115
      • 6.2.9.5   Direct conversion (consolidated bioprocessing) (CBP)      115
  • 6.2.10    Global ethanol consumption       116
  • 6.3          Biobutanol          117
    • 6.3.1      Production          119
    • 6.3.2      Prices    119

 

7              BIOMASS-BASED GAS     120

  • 7.1          Feedstocks         122
    • 7.1.1      Biomethane       122
    • 7.1.2      Production pathways     124
      • 7.1.2.1   Landfill gas recovery       124
      • 7.1.2.2   Anaerobic digestion        125
      • 7.1.2.3   Thermal gasification        126
    • 7.1.3      SWOT analysis   126
    • 7.1.4      Global production            127
    • 7.1.5      Prices    128
      • 7.1.5.1   Raw Biogas         128
      • 7.1.5.2   Upgraded Biomethane  128
    • 7.1.6      Bio-LNG               128
      • 7.1.6.1   Markets               128
        • 7.1.6.1.1               Trucks   128
        • 7.1.6.1.2               Marine 128
      • 7.1.6.2   Production          129
      • 7.1.6.3   Plants    129
    • 7.1.7      bio-CNG (compressed natural gas derived from biogas)   130
    • 7.1.8      Carbon capture from biogas        130
  • 7.2          Biosyngas            131
    • 7.2.1      Production          131
    • 7.2.2      Prices    132
  • 7.3          Biohydrogen      133
    • 7.3.1      Description         133
    • 7.3.2      SWOT analysis   134
    • 7.3.3      Production of biohydrogen from biomass              134
      • 7.3.3.1   Biological Conversion Routes      135
        • 7.3.3.1.1               Bio-photochemical Reaction        135
        • 7.3.3.1.2               Fermentation and Anaerobic Digestion   136
    • 7.3.3.2   Thermochemical conversion routes         136
        • 7.3.3.2.1               Biomass Gasification       136
        • 7.3.3.2.2               Biomass Pyrolysis             136
        • 7.3.3.2.3               Biomethane Reforming 137
    • 7.3.4      Applications       137
    • 7.3.5      Prices    138
  • 7.4          Biochar in biogas production       138
  • 7.5          Bio-DME              139

 

8              CHEMICAL RECYCLING FOR BIOFUELS      139

  • 8.1          Plastic pyrolysis 140
  • 8.2          Used tires pyrolysis         140
    • 8.2.1      Conversion to biofuel     142
  • 8.3          Co-pyrolysis of biomass and plastic wastes           143
  • 8.4          Gasification        144
    • 8.4.1      Syngas conversion to methanol 145
    • 8.4.2      Biomass gasification and syngas fermentation    149
    • 8.4.3      Biomass gasification and syngas thermochemical conversion        149
  • 8.5          Hydrothermal cracking   150
  • 8.6          SWOT analysis   151

 

9              ELECTROFUELS (E-FUELS)             152

  • 9.1          Introduction       152
    • 9.1.1      Benefits of e-fuels           154
  • 9.2          Feedstocks         155
    • 9.2.1      Hydrogen electrolysis     155
    • 9.2.2      CO2 capture       156
  • 9.3          SWOT analysis   156
  • 9.4          Production          157
    • 9.4.1      eFuel production facilities, current and planned 159
  • 9.5          Electrolysers      160
    • 9.5.1      Commercial alkaline electrolyser cells (AECs)       162
    • 9.5.2      PEM electrolysers (PEMEC)         162
    • 9.5.3      High-temperature solid oxide electrolyser cells (SOECs)  162
  • 9.6          Prices    162
  • 9.7          Market challenges           165
  • 9.8          Companies         166

 

10           ALGAE-DERIVED BIOFUELS           167

  • 10.1        Technology description 167
  • 10.2        Conversion pathways     167
  • 10.3        SWOT analysis   168
  • 10.4        Production          169
  • 10.5        Market challenges           170
  • 10.6        Prices    171
  • 10.7        Producers           171

 

11           GREEN AMMONIA           172

  • 11.1        Production          172
    • 11.1.1    Decarbonisation of ammonia production               174
    • 11.1.2    Green ammonia projects              175
  • 11.2        Green ammonia synthesis methods         175
    • 11.2.1    Haber-Bosch process      175
    • 11.2.2    Biological nitrogen fixation          176
    • 11.2.3    Electrochemical production         177
    • 11.2.4    Chemical looping processes        177
  • 11.3        SWOT analysis   177
  • 11.4        Blue ammonia   178
    • 11.4.1    Blue ammonia projects  178
  • 11.5        Markets and applications              179
    • 11.5.1    Chemical energy storage              179
      • 11.5.1.1                Ammonia fuel cells          179
    • 11.5.2    Marine fuel         180
  • 11.6        Prices    182
  • 11.7        Estimated market demand           184
  • 11.8        Companies and projects 184

 

12           BIOFUELS FROM CARBON CAPTURE         186

  • 12.1        Overview            187
  • 12.2        CO2 capture from point sources 189
  • 12.3        Production routes            190
  • 12.4        SWOT analysis   191
  • 12.5        Direct air capture (DAC) 192
    • 12.5.1    Description         192
    • 12.5.2    Deployment       194
    • 12.5.3    Point source carbon capture versus Direct Air Capture     194
    • 12.5.4    Technologies     195
      • 12.5.4.1                Solid sorbents   196
      • 12.5.4.2                Liquid sorbents 198
      • 12.5.4.3                Liquid solvents  198
      • 12.5.4.4                Airflow equipment integration   199
      • 12.5.4.5                Passive Direct Air Capture (PDAC)             199
      • 12.5.4.6                Direct conversion             200
      • 12.5.4.7                Co-product generation  200
      • 12.5.4.8                Low Temperature DAC  200
      • 12.5.4.9                Regeneration methods 201
    • 12.5.5    Commercialization and plants     201
    • 12.5.6    Metal-organic frameworks (MOFs) in DAC             202
    • 12.5.7    DAC plants and projects-current and planned      202
    • 12.5.8    Markets for DAC               209
    • 12.5.9    Costs     210
    • 12.5.10  Challenges          215
    • 12.5.11  Players and production  216
  • 12.6        Carbon utilization for biofuels    216
    • 12.6.1    Production routes            220
      • 12.6.1.1                Electrolyzers      221
      • 12.6.1.2                Low-carbon hydrogen    221
    • 12.6.2    Products & applications 223
      • 12.6.2.1                Vehicles               223
      • 12.6.2.2                Shipping               223
      • 12.6.2.3                Aviation               224
      • 12.6.2.4                Costs     225
      • 12.6.2.5                Ethanol 225
      • 12.6.2.6                Methanol            226
      • 12.6.2.7                Sustainable Aviation Fuel              230
      • 12.6.2.8                Methane             230
      • 12.6.2.9                Algae based biofuels       231
      • 12.6.2.10              CO₂-fuels from solar        232
    • 12.6.3    Challenges          234
    • 12.6.4    SWOT analysis   235
    • 12.6.5    Companies         236

 

13           BIO-OILS (PYROLYSIS OIL)             238

  • 13.1        Description         238
    • 13.1.1    Advantages of bio-oils    239
  • 13.2        Production          240
    • 13.2.1    Fast Pyrolysis     240
    • 13.2.2    Costs of production         241
    • 13.2.3    Upgrading           241
  • 13.3        SWOT analysis   242
  • 13.4        Applications       243
  • 13.5        Bio-oil producers              243
  • 13.6        Prices    244

 

14           REFUSE-DERIVED FUELS (RDF)    245

  • 14.1        Overview            245
  • 14.2        Production          246
    • 14.2.1    Production process         246
    • 14.2.2    Mechanical biological treatment               246
  • 14.3        Markets               247

 

15           COMPANY PROFILES       248

  • 15.1        Aduro Clean Technologies, Inc.  248
  • 15.2        Aemetis, Inc.      249
  • 15.3        Agilyx    250
  • 15.4        Air Company      251
  • 15.5        Agra Energy        251
  • 15.6        Aircela Inc           252
  • 15.7        Algenol 252
  • 15.8        Alpha Biofuels (Singapore) Pte Ltd            253
  • 15.9        Andritz AG          254
  • 15.10     APChemi Pvt. Ltd.            255
  • 15.11     Apeiron Bioenergy          256
  • 15.12     Aperam BioEnergia          257
  • 15.13     Applied Research Associates, Inc. (ARA) 257
  • 15.14     Arcadia eFuels   258
  • 15.15     ASB Biodiesel Limited     259
  • 15.16     Atmonia               259
  • 15.17     Avantium B.V.   260
  • 15.18     BASF      261
  • 15.19     BBCA Biochemical & GALACTIC Lactic Acid Co., Ltd.           262
  • 15.20     BDI-BioEnergy International GmbH          263
  • 15.21     BEE Biofuel         264
  • 15.22     Benefuel Inc.     264
  • 15.23     Bio2Oil ApS         264
  • 15.24     Bio-Oils 265
  • 15.25     BIOD Energy       266
  • 15.26     Biofy      266
  • 15.27     Biofine Technology, LLC 266
  • 15.28     BiogasClean A/S                267
  • 15.29     Biojet AS              268
  • 15.30     Bloom Biorenewables SA              268
  • 15.31     BlueAlp Technology        269
  • 15.32     Blue BioFuels, Inc.            269
  • 15.33     Braven Environmental, LLC           270
  • 15.34     Brightmark Energy           271
  • 15.35     bse Methanol GmbH      272
  • 15.36     BTG Bioliquids B.V.          273
  • 15.37     Byogy Renewables, Inc. 274
  • 15.38     C1 Green Chemicals AG 274
  • 15.39     Caphenia GmbH               275
  • 15.40     Carbonade          275
  • 15.41     Carbon Collect Limited   276
  • 15.42     Carbon Engineering Ltd. 277
  • 15.43     Carbon Infinity Limited  278
  • 15.44     Carbon Recycling International  279
  • 15.45     Carbon Sink LLC 280
  • 15.46     Carbyon BV         281
  • 15.47     Cargill    282
  • 15.48     Cassandra Oil AB              282
  • 15.49     Casterra Ag Ltd. 283
  • 15.50     Celtic Renewables Ltd.   284
  • 15.51     CERT Systems, Inc.           284
  • 15.52     CF Industries Holdings, Inc.          285
  • 15.53     Chitose Bio Evolution Pte Ltd.     286
  • 15.54     Circla Nordic       286
  • 15.55     Climeworks        287
  • 15.56     CNF Biofuel AS  288
  • 15.57     Cool Planet Energy Systems        289
  • 15.58     Corsair Group International         289
  • 15.59     Coval Energy B.V.             290
  • 15.60     Crimson Renewable Energy LLC 291
  • 15.61     C-Zero Inc.          291
  • 15.62     D-CRBN 292
  • 15.63     Diamond Green Diesel LLC           293
  • 15.64     Dimensional Energy        293
  • 15.65     Royal DSM N.V  294
  • 15.66     Dioxide Materials             295
  • 15.67     Dioxycle               296
  • 15.68     Domsjö Fabriker AB         297
  • 15.69     DuPont 299
  • 15.70     EcoCeres, Inc.    300
  • 15.71     Eco Environmental          301
  • 15.72     Eco Fuel Technology, Inc               301
  • 15.73     Electro-Active Technologies Inc. 302
  • 15.74     Emerging Fuels Technology (EFT)              303
  • 15.75     Encina Development Group, LLC 304
  • 15.76     Enerkem, Inc.    305
  • 15.77     Eneus Energy     305
  • 15.78     Enexor BioEnergy             306
  • 15.79     Eni Sustainable Mobility 306
  • 15.80     Ensyn Corporation           307
  • 15.81     Euglena Co., Ltd.               308
  • 15.82     EnviTec Biogas AG           308
  • 15.83     Firefly Green Fuels          309
  • 15.84     Forge Hydrocarbons Corporation              310
  • 15.85     FuelPositive Corp.            311
  • 15.86     Fuenix Ecogy      312
  • 15.87     Fulcrum BioEnergy, Inc. 313
  • 15.88     Galp Energia, SGPS, S.A. 313
  • 15.89     GenCell Energy 314
  • 15.90     Genecis Bioindustries, Inc.           315
  • 15.91     Gevo, Inc             316
  • 15.92     GIDARA Energy B.V.        316
  • 15.93     Graforce Hydro GmbH   317
  • 15.94     Granbio Technologies    318
  • 15.95     Green COP Pte Ltd           320
  • 15.96     Green Earth Institute      320
  • 15.97     Green Fuel          321
  • 15.98     Hago Energetics                321
  • 15.99     Haldor Topsoe A/S           322
  • 15.100   Handerek Technologies 322
  • 15.101   Hero BX                323
  • 15.102   Honeywell          324
  • 15.103   Hyundai Oilbank               325
  • 15.104   Oy Hydrocell Ltd.              326
  • 15.105   Hy2Gen AG         326
  • 15.106   HYCO1, Inc.         327
  • 15.107   HydGene Renewables   328
  • 15.108   Ineratec GmbH 328
  • 15.109   Infinitree LLC      330
  • 15.110   Infinium Electrofuels      331
  • 15.111   Innoltek               332
  • 15.112   Jilin COFCO Biomaterial Corporation        332
  • 15.113   Jupiter Ionics Pty Ltd       333
  • 15.114   Kaidi      334
  • 15.115   Kanteleen Voima             335
  • 15.116   Khepra 335
  • 15.117   Klean Industries 336
  • 15.118   Krajete GmbH   336
  • 15.119   Kvasir Technologies        338
  • 15.120   LanzaJet, Inc.     338
  • 15.121   Lanzatech            339
  • 15.122   Lectrolyst LLC     341
  • 15.123   Licella    342
  • 15.124   Liquid Wind AB 343
  • 15.125   Lummus Technology LLC               343
  • 15.126   LXP Group GmbH             344
  • 15.127   Manta Biofuel, LLC           345
  • 15.128   Mash Energy ApS             346
  • 15.129   Mercurius Biorefining Inc              346
  • 15.130   MOFWORX         347
  • 15.131   Mote, Inc.           347
  • 15.132   NeoZeo AB         348
  • 15.133   Neste    349
  • 15.134   New Hope Energy            349
  • 15.135   NewEnergyBlue LLC        350
  • 15.136   Nexus Fuels, LLC               351
  • 15.137   Nordic ElectroFuel           352
  • 15.138   Nordsol 352
  • 15.139   Norsk e-Fuel AS 353
  • 15.140   Nova Pangaea Technologies (UK) Ltd.      354
  • 15.141   Novozymes A/S 354
  • 15.142   Obeo Biogas       355
  • 15.143   Oberon Fuels Inc.             356
  • 15.144   Obrist Group      356
  • 15.145   O.C.O    357
  • 15.146   Opus 12, Inc.      357
  • 15.147   ORLEN Południe               358
  • 15.148   OxEon Energy, LLC           358
  • 15.149   Phillips 66            359
  • 15.150   Phoenix BioPower           360
  • 15.151   Photanol B.V.     360
  • 15.152   Phycobloom       361
  • 15.153   Phytonix Corporation     362
  • 15.154   Plastic2Oil, Inc.  362
  • 15.155   Plastogaz SA       363
  • 15.156   Polycycl 364
  • 15.157   Praj Industries Ltd.          365
  • 15.158   Preem AB            367
  • 15.159   Prometheus Fuels, Inc.  367
  • 15.160   Proton Power, Inc.           368
  • 15.161   Provectus Algae 368
  • 15.162   Pure Lignin Environmental Technology   368
  • 15.163   Pyrochar              369
  • 15.164   Qairos Energies 370
  • 15.165   Quadrise PLC      371
  • 15.166   QuantaFuel ASA               372
  • 15.167   RenFuel               373
  • 15.168   Renmatix             373
  • 15.169   Renovare Fuels 376
  • 15.170   Repsol  377
  • 15.171   Resilient Energi 378
  • 15.172   Resynergi, Inc.   378
  • 15.173   Reverion GmbH 379
  • 15.174   RISE Research Institutes of Sweden AB   380
  • 15.175   SABIC    380
  • 15.176   Sainc Energy Limited       381
  • 15.177   SBI BioEnergy Inc.            382
  • 15.178   Sea6 Energy       382
  • 15.179   Sekab E-Technology AB 383
  • 15.180   Shell      384
  • 15.181   Silva Green Fuel 385
  • 15.182   SkyNRG 385
  • 15.183   Skytree BV          385
  • 15.184   St1 Oy   386
  • 15.185   Steeper Energy Aps         387
  • 15.186   Stiesdal 388
  • 15.187   Sumitomo           389
  • 15.188   SunCoal Industries GmbH             390
  • 15.189   Sundrop Fuels, Inc.          390
  • 15.190   Sunho Biodiesel Corporation       391
  • 15.191   Sunfire GmbH    392
  • 15.192   Synhelion            393
  • 15.193   Synkero               394
  • 15.194   Syzygy Plasmonics, Inc.  394
  • 15.195   Swedish Biofuels AB        395
  • 15.196   Takachar              395
  • 15.197   TotalEnergies     396
  • 15.198   Tree Energy Solutions (TES-H2)  397
  • 15.199   Twelve 399
  • 15.200   Uflex     401
  • 15.201   UPM Biofuels     401
  • 15.202   Velocys 402
  • 15.203   VERBIO Vereinigte BioEnergie AG             403
  • 15.204   Vertimass LLC    404
  • 15.205   Vertoro 405
  • 15.206   Versalis SpA        406
  • 15.207   Vertus Energy Ltd.           408
  • 15.208   Virent Inc.           409
  • 15.209   Viridos, Inc.         410
  • 15.210   WasteFuel          410
  • 15.211   XFuel     411
  • 15.212   Yield10 Bioscience, Inc.  411

 

16           REFERENCES       413

 

List of Tables

  • Table 1. Market drivers for biofuels.        26
  • Table 2. Market challenges for biofuels. 27
  • Table 3. Liquid biofuels market 2020-2035, by type and production.          29
  • Table 4. Industry developments in biofuels 2022-2024.    31
  • Table 5. Comparison of biofuels.               34
  • Table 6. Comparison of biofuel costs (USD/liter) 2023, by type.   39
  • Table 7. Categories and examples of solid biofuel.             40
  • Table 8. Comparison of biofuels and e-fuels to fossil and electricity.           43
  • Table 9. Classification of biomass feedstock.        44
  • Table 10. Biorefinery feedstocks.              45
  • Table 11. Feedstock conversion pathways.           45
  • Table 12. First-Generation Feedstocks.   46
  • Table 13.  Lignocellulosic ethanol plants and capacities.  48
  • Table 14. Comparison of pulping and biorefinery lignins. 49
  • Table 15. Commercial and pre-commercial biorefinery lignin production facilities and  processes 50
  • Table 16. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.  52
  • Table 17. Properties of microalgae and macroalgae.         54
  • Table 18. Yield of algae and other biodiesel crops.             55
  • Table 19. Advantages and disadvantages of biofuels, by generation.         56
  • Table 20. Biodiesel by generation.            67
  • Table 21. Biodiesel production techniques.          70
  • Table 22. Summary of pyrolysis technique under different operating conditions. 71
  • Table 23. Biomass materials and their bio-oil yield.            72
  • Table 24. Biofuel production cost from the biomass pyrolysis process.      73
  • Table 25. Properties of vegetable oils in comparison to diesel.     74
  • Table 26. Main producers of HVO and capacities.               76
  • Table 27. Example commercial Development of BtL processes.    77
  • Table 28. Pilot or demo projects for biomass to liquid (BtL) processes.     77
  • Table 29. Global biodiesel consumption, 2010-2035 (M litres/year).          82
  • Table 30. Global renewable diesel consumption, 2010-2035 (M litres/year).          87
  • Table 31. Renewable diesel price ranges.               88
  • Table 32. Advantages and disadvantages of Bio-aviation fuel.       89
  • Table 33. Production pathways for Bio-aviation fuel.        91
  • Table 34. Current and announced Bio-aviation fuel facilities and capacities.           94
  • Table 35. Global bio-jet fuel consumption 2019-2035 (Million litres/year).              95
  • Table 36. Bio-based naphtha markets and applications.   99
  • Table 37. Bio-naphtha market value chain.            99
  • Table 38. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.        101
  • Table 39. Bio-based Naphtha production capacities, by producer.               101
  • Table 40. Comparison of biogas, biomethane and natural gas.      106
  • Table 41.  Processes in bioethanol production.  114
  • Table 42. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.           115
  • Table 43. Ethanol consumption 2010-2035 (million litres).             116
  • Table 44. Biogas feedstocks.       122
  • Table 45. Existing and planned bio-LNG production plants.            129
  • Table 46. Methods for capturing carbon dioxide from biogas.       130
  • Table 47. Comparison of different Bio-H2 production pathways. 135
  • Table 48. Markets and applications for biohydrogen.       137
  • Table 49. Summary of gasification technologies. 144
  • Table 50. Overview of hydrothermal cracking for advanced chemical recycling.     150
  • Table 51. Applications of e-fuels, by type.             153
  • Table 52. Overview of e-fuels.    154
  • Table 53. Benefits of e-fuels.      154
  • Table 54. eFuel production facilities, current and planned.            159
  • Table 55. Main characteristics of different electrolyzer technologies.        161
  • Table 56. Market challenges for e-fuels. 165
  • Table 57. E-fuels companies.       166
  • Table 58. Algae-derived biofuel producers.           171
  • Table 59. Green ammonia projects (current and planned).             175
  • Table 60. Blue ammonia projects.             178
  • Table 61. Ammonia fuel cell technologies.            179
  • Table 62. Market overview of green ammonia in marine fuel.       180
  • Table 63. Summary of marine alternative fuels.  181
  • Table 64. Estimated costs for different types of ammonia.             183
  • Table 65. Main players in green ammonia.            184
  • Table 66. Market overview for CO2 derived fuels.              187
  • Table 67. Point source examples.              189
  • Table 68. Advantages and disadvantages of DAC.               193
  • Table 69. Companies developing airflow equipment integration with DAC.             199
  • Table 70. Companies developing Passive Direct Air Capture (PDAC) technologies. 199
  • Table 71. Companies developing regeneration methods for DAC technologies.     201
  • Table 72. DAC companies and technologies.         201
  • Table 73. DAC technology developers and production.    203
  • Table 74. DAC projects in development. 208
  • Table 75. Markets for DAC.          209
  • Table 76. Costs summary for DAC.            210
  • Table 77. Cost estimates of DAC.               213
  • Table 78. Challenges for DAC technology.              215
  • Table 79. DAC companies and technologies.         216
  • Table 80. Market overview for CO2 derived fuels.              218
  • Table 81. Main production routes and processes for manufacturing fuels from captured carbon dioxide.  221
  • Table 82. CO₂-derived fuels projects.      222
  • Table 83. Thermochemical methods to produce methanol from CO2.        227
  • Table 84. pilot plants for CO2-to-methanol conversion.  229
  • Table 85. Microalgae products and prices.             232
  • Table 86. Main Solar-Driven CO2 Conversion Approaches.             234
  • Table 87. Market challenges for CO2 derived fuels.           234
  • Table 88. Companies in CO2-derived fuel products.          236
  • Table 89. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.                239
  • Table 90. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.              240
  • Table 91. Main techniques used to upgrade bio-oil into higher-quality fuels.          241
  • Table 92. Markets and applications for bio-oil.     243
  • Table 93. Bio-oil producers.         244
  • Table 94. Key resource recovery technologies     246
  • Table 95. Markets and end uses for refuse-derived fuels (RDF).   247
  • Table 96. Granbio Nanocellulose Processes.         318

 

List of Figures

  • Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022.     28
  • Figure 2. Distribution of global liquid biofuel production in 2022. 29
  • Figure 3. Diesel and gasoline alternatives and blends.      37
  • Figure 4. SWOT analysis for biofuels.       39
  • Figure 5.  Schematic of a biorefinery for production of carriers and chemicals.      50
  • Figure 6. Hydrolytic lignin powder.           53
  • Figure 7. SWOT analysis for energy crops in biofuels.       59
  • Figure 8. SWOT analysis for agricultural residues in biofuels.         61
  • Figure 9. SWOT analysis for Manure, sewage sludge and organic waste in biofuels.             63
  • Figure 10. SWOT analysis for forestry and wood waste in biofuels.             65
  • Figure 11. Range of biomass cost by feedstock type.        65
  • Figure 12. Regional production of biodiesel (billion litres).              67
  • Figure 13. SWOT analysis for biodiesel.   69
  • Figure 14. Flow chart for biodiesel production.    74
  • Figure 15. Biodiesel (B20) average prices, current and historical, USD/litre.            80
  • Figure 16. Global biodiesel consumption, 2010-2035 (M litres/year).        82
  • Figure 17. SWOT analysis for renewable iesel.     86
  • Figure 18. Global renewable diesel consumption, 2010-2035 (M litres/year).        87
  • Figure 19. SWOT analysis for Bio-aviation fuel.    90
  • Figure 20. Global bio-jet fuel consumption to 2019-2035 (Million litres/year).       95
  • Figure 21. SWOT analysis for bio-naphtha.            98
  • Figure 22. Bio-based naphtha production capacities, 2018-2035 (tonnes).              102
  • Figure 23. SWOT analysis biomethanol.  104
  • Figure 24. Renewable Methanol Production Processes from Different Feedstocks.              105
  • Figure 25. Production of biomethane through anaerobic digestion and upgrading.              106
  • Figure 26. Production of biomethane through biomass gasification and methanation.       107
  • Figure 27. Production of biomethane through the Power to methane process.     108
  • Figure 28. SWOT analysis for ethanol.     110
  • Figure 29. Ethanol consumption 2010-2035 (million litres).            116
  • Figure 30. Properties of petrol and biobutanol.   118
  • Figure 31. Biobutanol production route. 118
  • Figure 32. Biogas and biomethane pathways.      121
  • Figure 33. Overview of biogas utilization.               123
  • Figure 34. Biogas and biomethane pathways.      124
  • Figure 35. Schematic overview of anaerobic digestion process for biomethane production.            126
  • Figure 36. Schematic overview of biomass gasification for biomethane production.            126
  • Figure 37. SWOT analysis for biogas.        127
  • Figure 38. Total syngas market by product in MM Nm³/h of Syngas, 2021.               132
  • Figure 39. SWOT analysis for biohydrogen.           134
  • Figure 40. Waste plastic production pathways to (A) diesel and (B) gasoline           140
  • Figure 41. Schematic for Pyrolysis of Scrap Tires. 142
  • Figure 42. Used tires conversion process.              143
  • Figure 43. Total syngas market by product in MM Nm³/h of Syngas, 2021.               145
  • Figure 44. Overview of biogas utilization.               147
  • Figure 45. Biogas and biomethane pathways.      148
  • Figure 46. SWOT analysis for chemical recycling of biofuels.          151
  • Figure 47. Process steps in the production of electrofuels.             152
  • Figure 48. Mapping storage technologies according to performance characteristics.           153
  • Figure 49. Production process for green hydrogen.           156
  • Figure 50. SWOT analysis for E-fuels.       157
  • Figure 51. E-liquids production routes.   158
  • Figure 52. Fischer-Tropsch liquid e-fuel products.              158
  • Figure 53. Resources required for liquid e-fuel production.            159
  • Figure 54. Levelized cost and fuel-switching CO2 prices of e-fuels.             163
  • Figure 55. Cost breakdown for e-fuels.   165
  • Figure 56.  Pathways for algal biomass conversion to biofuels.     167
  • Figure 57. SWOT analysis for algae-derived biofuels.        168
  • Figure 58. Algal biomass conversion process for biofuel production.          170
  • Figure 59. Classification and process technology according to carbon emission in ammonia production.    172
  • Figure 60. Green ammonia production and use. 174
  • Figure 61. Schematic of the Haber Bosch ammonia synthesis reaction.     176
  • Figure 62. Schematic of hydrogen production via steam methane reformation.    176
  • Figure 63. SWOT analysis for green ammonia.     178
  • Figure 64. Estimated production cost of green ammonia.               183
  • Figure 65. Projected annual ammonia production, million tons.   184
  • Figure 66. CO2 capture and separation technology.          186
  • Figure 67. Conversion route for CO2-derived fuels and chemical intermediates.   188
  • Figure 68.  Conversion pathways for CO2-derived methane, methanol and diesel.               189
  • Figure 69. SWOT analysis for biofuels from carbon capture.           191
  • Figure 70. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.   192
  • Figure 71. Global CO2 capture from biomass and DAC in the Net Zero Scenario.   193
  • Figure 72.  DAC technologies.     195
  • Figure 73. Schematic of Climeworks DAC system.               196
  • Figure 74. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.          197
  • Figure 75.  Flow diagram for solid sorbent DAC.  198
  • Figure 76. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.    198
  • Figure 77. Global capacity of direct air capture facilities. 203
  • Figure 78. Global map of DAC and CCS plants.      209
  • Figure 79. Schematic of costs of DAC technologies.           211
  • Figure 80. DAC cost breakdown and comparison.               212
  • Figure 81. Operating costs of generic liquid and solid-based DAC systems.              214
  • Figure 82. Conversion route for CO2-derived fuels and chemical intermediates.   219
  • Figure 83.  Conversion pathways for CO2-derived methane, methanol and diesel.               220
  • Figure 84. CO2 feedstock for the production of e-methanol.         228
  • Figure 85. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.      233
  • Figure 86. SWOT analysis: CO2 utilization in fuels.             235
  • Figure 87. Audi synthetic fuels.  236
  • Figure 88. Bio-oil upgrading/fractionation techniques.    241
  • Figure 89. SWOT analysis for bio-oils.      243
  • Figure 90. ANDRITZ Lignin Recovery process.       255
  • Figure 91. ChemCyclingTM prototypes.  261
  • Figure 92. ChemCycling circle by BASF.   262
  • Figure 93. FBPO process 273
  • Figure 94. Direct Air Capture Process.     277
  • Figure 95. CRI process.   280
  • Figure 96. Cassandra Oil  process.             283
  • Figure 97. Colyser process.          290
  • Figure 98. ECFORM electrolysis reactor schematic.            296
  • Figure 99. Dioxycle modular electrolyzer.              297
  • Figure 100. Domsjö process.       298
  • Figure 101. FuelPositive system. 311
  • Figure 102. INERATEC unit.           329
  • Figure 103. Infinitree swing method.       331
  • Figure 104. Audi/Krajete unit.    337
  • Figure 105. Enfinity cellulosic ethanol technology process.            366
  • Figure 106: Plantrose process.    374
  • Figure 107. Sunfire process for Blue Crude production.    393
  • Figure 108. Takavator.   396
  • Figure 109. O12 Reactor.              399
  • Figure 110. Sunglasses with lenses made from CO2-derived materials.     400
  • Figure 111. CO2 made car part.  400
  • Figure 112. The Velocys process.               403
  • Figure 113. Goldilocks process and applications. 406
  • Figure 114. The Proesa® Process.              407

 

 

The Global Market for Biofuels 2024-2035
The Global Market for Biofuels 2024-2035
PDF download.

The Global Market for Biofuels 2024-2035
The Global Market for Biofuels 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.