The Global Market for Advanced Batteries 2024-2034

0

Li-ion, Lithium-Metal, Lithium-Sulfur, Lithium Titanate & Niobate, Sodium-ion, Aluminium-ion, All-solid state batteries (ASSBs), Flexible, Transparent, Degradable, Printed, Redox Flow, and Zinc.

  • Published: December 2023
  • Pages: 563
  • Tables: 106
  • Figures: 155

 

Advanced, rechargeable batteries with very high efficiency are a key technology, enabling improved energy generation and storage for a wide range of applications. Their use will accelerate progress towards sustainable and smart solutions to current energy problems. The Global Market for Advanced Batteries 2024-2034 covers the whole range of advanced battery technologies utilized in markets including Electric Vehicles and Transportation, Consumer Electronics, Grid Storage and Stationary Battery markets.

This 500+ page market report provides a comprehensive analysis of the global advanced battery market to 2034. It covers all advanced battery technologies including lithium-ion, lithium-metal, lithium-sulfur, sodium-ion, aluminum-ion, redox flow, zinc-based, solid-state, flexible, transparent, printed, and more.

The report analyzes the global market by battery type, end-use market, key technologies, materials, major players, product developments, SWOT analyses, and more. It includes historical data from 2018-2022 and market forecasts to 2034 segmented by battery types and end use markets. Battery technologies covered in depth:

  • Lithium-ion
  • Lithium-metal
  • Lithium-sulfur
  • Sodium-ion
  • Aluminium-ion
  • Redox flow
  • Zinc-based
  • Solid-state
  • Flexible
  • Transparent
  • Printed

 

End-use markets analyzed include:

  • Electric vehicles and transportation (e.g. trains, trucks, boats)
  • Grid storage
  • Consumer electronics
  • Stationary batteries

 

The report includes 300+ company profiles of all the key manufacturers, developers, and suppliers of advanced battery materials, components, technologies, and recycling. Profiles include overviews, products/technologies, manufacturing capabilities, partnerships, etc. Companies profiled include Atlas Materials, CMBlu Energy AG, Enerpoly, ESS Tech, Factorial, Flow Aluminum, Inc., Gotion High Tech, Graphene Manufacturing Group, High Performace Battery Holding AG, Inobat, Inx, Lyten, Our Next Energy (ONE), Sicona Battery Technologies, Sila, Solid Power, Stabl Energy, TasmanIon and VFlowTech. 

 

 

1              RESEARCH METHODOLOGY         35

  • 1.1          Report scope     35
  • 1.2          Research methodology 35

 

2              INTRODUCTION 37

  • 2.1          The global market for advanced batteries             37
    • 2.1.1      Electric vehicles 39
      • 2.1.1.1   Market overview             39
      • 2.1.1.2   Battery Electric Vehicles 39
      • 2.1.1.3   Electric buses, vans and trucks   40
        • 2.1.1.3.1               Electric medium and heavy duty trucks   41
        • 2.1.1.3.2               Electric light commercial vehicles (LCVs) 41
        • 2.1.1.3.3               Electric buses    42
        • 2.1.1.3.4               Micro EVs            43
      • 2.1.1.4   Electric off-road 44
        • 2.1.1.4.1               Construction vehicles     44
        • 2.1.1.4.2               Electric trains     46
        • 2.1.1.4.3               Electric boats     47
      • 2.1.1.5   Market demand and forecasts    49
    • 2.1.2      Grid storage       52
      • 2.1.2.1   Market overview             52
      • 2.1.2.2   Technologies     53
      • 2.1.2.3   Market demand and forecasts    54
    • 2.1.3      Consumer electronics    56
      • 2.1.3.1   Market overview             56
      • 2.1.3.2   Technologies     56
      • 2.1.3.3   Market demand and forecasts    57
    • 2.1.4      Stationary batteries        57
      • 2.1.4.1   Market overview             57
      • 2.1.4.2   Technologies     59
      • 2.1.4.3   Market demand and forecasts    60
  • 2.2          Market drivers  60
  • 2.3          Battery market megatrends        63
  • 2.4          Advanced materials for batteries              66
  • 2.5          Motivation for battery development beyond lithium        66

 

3              TYPES OF BATTERIES       68

  • 3.1          Battery chemistries         68
  • 3.2          LI-ION BATTERIES             68
    • 3.2.1      Technology description 68
      • 3.2.1.1   Types of Lithium Batteries            73
    • 3.2.2      SWOT analysis   76
    • 3.2.3      Anodes 77
      • 3.2.3.1   Materials             77
        • 3.2.3.1.1               Graphite              79
        • 3.2.3.1.2               Lithium Titanate               79
        • 3.2.3.1.3               Lithium Metal    79
        • 3.2.3.1.4               Silicon anodes   80
          • 3.2.3.1.4.1           Benefits               81
          • 3.2.3.1.4.2           Development in li-ion batteries  82
          • 3.2.3.1.4.3           Manufacturing silicon     83
          • 3.2.3.1.4.4           Costs     84
          • 3.2.3.1.4.5           Applications       85
            • 3.2.3.1.4.5.1        EVs         86
          • 3.2.3.1.4.6           Future outlook  87
        • 3.2.3.1.5               Alloy materials  88
        • 3.2.3.1.6               Carbon nanotubes in Li-ion          88
        • 3.2.3.1.7               Graphene coatings for Li-ion        89
    • 3.2.4      Li-ion electrolytes            89
    • 3.2.5      Cathodes             90
      • 3.2.5.1   Materials             90
        • 3.2.5.1.1               High-nickel cathode materials     92
        • 3.2.5.1.2               Manufacturing  93
        • 3.2.5.1.3               High manganese content             94
        • 3.2.5.1.4               Li-Mn-rich cathodes        94
        • 3.2.5.1.5               Lithium Cobalt Oxide(LiCoO2) — LCO       95
        • 3.2.5.1.6               Lithium Iron Phosphate(LiFePO4) — LFP 96
        • 3.2.5.1.7               Lithium Manganese Oxide (LiMn2O4) — LMO      97
        • 3.2.5.1.8               Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC   98
        • 3.2.5.1.9               Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA         99
        • 3.2.5.1.10             LMR-NMC           100
        • 3.2.5.1.11             Lithium manganese phosphate (LiMnP) 100
        • 3.2.5.1.12             Lithium manganese iron phosphate (LiMnFePO4 or LMFP)             101
        • 3.2.5.1.13             Lithium nickel manganese oxide (LNMO)               101
      • 3.2.5.2   Comparison of key lithium-ion cathode materials               102
      • 3.2.5.3   Emerging cathode material synthesis methods   102
      • 3.2.5.4   Cathode coatings             103
    • 3.2.6      Binders and conductive additives              103
      • 3.2.6.1   Materials             103
    • 3.2.7      Separators          104
      • 3.2.7.1   Materials             104
    • 3.2.8      Platinum group metals   105
    • 3.2.9      Li-ion battery market players      105
    • 3.2.10    Li-ion recycling  106
      • 3.2.10.1                Comparison of recycling techniques        108
      • 3.2.10.2                Hydrometallurgy              110
        • 3.2.10.2.1             Method overview            110
          • 3.2.10.2.1.1         Solvent extraction           111
        • 3.2.10.2.2             SWOT analysis   112
      • 3.2.10.3                Pyrometallurgy 113
        • 3.2.10.3.1             Method overview            113
        • 3.2.10.3.2             SWOT analysis   114
      • 3.2.10.4                Direct recycling 115
        • 3.2.10.4.1             Method overview            115
          • 3.2.10.4.1.1         Electrolyte separation    116
          • 3.2.10.4.1.2         Separating cathode and anode materials               117
          • 3.2.10.4.1.3         Binder removal 117
          • 3.2.10.4.1.4         Relithiation         117
          • 3.2.10.4.1.5         Cathode recovery and rejuvenation         118
          • 3.2.10.4.1.6         Hydrometallurgical-direct hybrid recycling            119
        • 3.2.10.4.2             SWOT analysis   120
      • 3.2.10.5                Other methods 121
        • 3.2.10.5.1             Mechanochemical Pretreatment              121
        • 3.2.10.5.2             Electrochemical Method               121
        • 3.2.10.5.3             Ionic Liquids       121
      • 3.2.10.6                Recycling of Specific Components             122
        • 3.2.10.6.1             Anode (Graphite)            122
        • 3.2.10.6.2             Cathode               122
        • 3.2.10.6.3             Electrolyte          123
      • 3.2.10.7                Recycling of Beyond Li-ion Batteries         123
        • 3.2.10.7.1             Conventional vs Emerging Processes       123
    • 3.2.11    Global revenues               125
  • 3.3          LITHIUM-METAL BATTERIES         126
    • 3.3.1      Technology description 126
    • 3.3.2      Lithium-metal anodes    127
    • 3.3.3      Challenges          127
    • 3.3.4      Energy density  128
    • 3.3.5      Anode-less Cells               129
    • 3.3.6      Lithium-metal and solid-state batteries  129
    • 3.3.7      Applications       130
    • 3.3.8      SWOT analysis   131
    • 3.3.9      Product developers        132
  • 3.4          LITHIUM-SULFUR BATTERIES       133
    • 3.4.1      Technology description 133
      • 3.4.1.1   Advantages        133
      • 3.4.1.2   Challenges          134
      • 3.4.1.3   Commercialization           135
    • 3.4.2      SWOT analysis   136
    • 3.4.3      Global revenues               137
    • 3.4.4      Product developers        138
  • 3.5          LITHIUM TITANATE AND NIOBATE BATTERIES       139
    • 3.5.1      Technology description 139
    • 3.5.2      Niobium titanium oxide (NTO)   139
      • 3.5.2.1   Niobium tungsten oxide 140
      • 3.5.2.2   Vanadium oxide anodes 141
    • 3.5.3      Global revenues               142
    • 3.5.4      Product developers        142
  • 3.6          SODIUM-ION (NA-ION) BATTERIES            144
    • 3.6.1      Technology description 144
      • 3.6.1.1   Cathode materials           144
        • 3.6.1.1.1               Layered transition metal oxides 144
          • 3.6.1.1.1.1           Types    144
          • 3.6.1.1.1.2           Cycling performance      145
          • 3.6.1.1.1.3           Advantages and disadvantages  146
          • 3.6.1.1.1.4           Market prospects for LO SIB        146
        • 3.6.1.1.2               Polyanionic materials     147
          • 3.6.1.1.2.1           Advantages and disadvantages  148
          • 3.6.1.1.2.2           Types    148
          • 3.6.1.1.2.3           Market prospects for Poly SIB     148
        • 3.6.1.1.3               Prussian blue analogues (PBA)   149
          • 3.6.1.1.3.1           Types    149
          • 3.6.1.1.3.2           Advantages and disadvantages  150
          • 3.6.1.1.3.3           Market prospects for PBA-SIB     151
      • 3.6.1.2   Anode materials               152
        • 3.6.1.2.1               Hard carbons     152
        • 3.6.1.2.2               Carbon black      154
        • 3.6.1.2.3               Graphite              155
        • 3.6.1.2.4               Carbon nanotubes           158
        • 3.6.1.2.5               Graphene           159
        • 3.6.1.2.6               Alloying materials            161
        • 3.6.1.2.7               Sodium Titanates             162
        • 3.6.1.2.8               Sodium Metal    162
      • 3.6.1.3   Electrolytes        162
    • 3.6.2      Comparative analysis with other battery types    164
    • 3.6.3      Cost comparison with Li-ion         165
    • 3.6.4      Materials in sodium-ion battery cells       165
    • 3.6.5      SWOT analysis   168
    • 3.6.6      Global revenues               169
    • 3.6.7      Product developers        170
      • 3.6.7.1   Battery Manufacturers  170
      • 3.6.7.2   Large Corporations          170
      • 3.6.7.3   Automotive Companies 170
      • 3.6.7.4   Chemicals and Materials Firms   171
  • 3.7          SODIUM-SULFUR BATTERIES       172
    • 3.7.1      Technology description 172
    • 3.7.2      Applications       173
    • 3.7.3      SWOT analysis   174
  • 3.8          ALUMINIUM-ION BATTERIES       176
    • 3.8.1      Technology description 176
    • 3.8.2      SWOT analysis   177
    • 3.8.3      Commercialization           178
    • 3.8.4      Global revenues               179
    • 3.8.5      Product developers        179
  • 3.9          ALL-SOLID STATE BATTERIES (ASSBs)       181
    • 3.9.1      Technology description 181
      • 3.9.1.1   Solid-state electrolytes  182
    • 3.9.2      Features and advantages              183
    • 3.9.3      Technical specifications 184
    • 3.9.4      Types    187
    • 3.9.5      Microbatteries  189
      • 3.9.5.1   Introduction       189
      • 3.9.5.2   Materials             190
      • 3.9.5.3   Applications       190
      • 3.9.5.4   3D designs          190
        • 3.9.5.4.1               3D printed batteries       191
    • 3.9.6      Bulk type solid-state batteries    191
    • 3.9.7      SWOT analysis   192
    • 3.9.8      Limitations          194
    • 3.9.9      Global revenues               195
    • 3.9.10    Product developers        197
  • 3.10        FLEXIBLE BATTERIES        198
    • 3.10.1    Technology description 198
    • 3.10.2    Technical specifications 200
      • 3.10.2.1                Approaches to flexibility                201
    • 3.10.3    Flexible electronics          203
      • 3.10.3.1                Flexible materials             204
    • 3.10.4    Flexible and wearable Metal-sulfur batteries       205
    • 3.10.5    Flexible and wearable Metal-air batteries              206
    • 3.10.6    Flexible Lithium-ion Batteries     207
      • 3.10.6.1                Electrode designs             210
      • 3.10.6.2                Fiber-shaped Lithium-Ion batteries          213
      • 3.10.6.3                Stretchable lithium-ion batteries               214
      • 3.10.6.4                Origami and kirigami lithium-ion batteries            216
    • 3.10.7    Flexible Li/S batteries     216
      • 3.10.7.1                Components      217
      • 3.10.7.2                Carbon nanomaterials    217
    • 3.10.8    Flexible lithium-manganese dioxide (Li–MnO2) batteries 218
    • 3.10.9    Flexible zinc-based batteries       219
      • 3.10.9.1                Components      219
        • 3.10.9.1.1             Anodes 219
        • 3.10.9.1.2             Cathodes             220
      • 3.10.9.2                Challenges          220
      • 3.10.9.3                Flexible zinc-manganese dioxide (Zn–Mn) batteries          221
      • 3.10.9.4                Flexible silver–zinc (Ag–Zn) batteries       222
      • 3.10.9.5                Flexible Zn–Air batteries               223
      • 3.10.9.6                Flexible zinc-vanadium batteries               223
    • 3.10.10  Fiber-shaped batteries  224
      • 3.10.10.1              Carbon nanotubes           224
      • 3.10.10.2              Types    225
      • 3.10.10.3              Applications       226
      • 3.10.10.4              Challenges          226
    • 3.10.11  Energy harvesting combined with wearable energy storage devices          227
    • 3.10.12  SWOT analysis   229
    • 3.10.13  Global revenues               230
    • 3.10.14  Product developers        232
  • 3.11        TRANSPARENT BATTERIES            233
    • 3.11.1    Technology description 233
    • 3.11.2    Components      234
    • 3.11.3    SWOT analysis   235
    • 3.11.4    Market outlook 237
  • 3.12        DEGRADABLE BATTERIES               237
    • 3.12.1    Technology description 237
    • 3.12.2    Components      238
    • 3.12.3    SWOT analysis   240
    • 3.12.4    Market outlook 241
    • 3.12.5    Product developers        241
  • 3.13        PRINTED BATTERIES        242
    • 3.13.1    Technical specifications 242
    • 3.13.2    Components      243
    • 3.13.3    Design  245
    • 3.13.4    Key features      246
    • 3.13.5    Printable current collectors          246
    • 3.13.6    Printable electrodes       247
    • 3.13.7    Materials             247
    • 3.13.8    Applications       247
    • 3.13.9    Printing techniques         248
    • 3.13.10  Lithium-ion (LIB) printed batteries            250
    • 3.13.11  Zinc-based printed batteries       251
    • 3.13.12  3D Printed batteries       254
      • 3.13.12.1              3D Printing techniques for battery manufacturing             256
      • 3.13.12.2              Materials for 3D printed batteries            258
        • 3.13.12.2.1          Electrode materials         258
        • 3.13.12.2.2          Electrolyte Materials      258
    • 3.13.13  SWOT analysis   259
    • 3.13.14  Global revenues               260
    • 3.13.15  Product developers        261
  • 3.14        REDOX FLOW BATTERIES               263
    • 3.14.1    Technology description 263
    • 3.14.2    Vanadium redox flow batteries (VRFB)   264
    • 3.14.3    Zinc-bromine flow batteries (ZnBr)           265
    • 3.14.4    Polysulfide bromine flow batteries (PSB)               266
    • 3.14.5    Iron-chromium flow batteries (ICB)          267
    • 3.14.6    All-Iron flow batteries    267
    • 3.14.7    Zinc-iron (Zn-Fe) flow batteries  268
    • 3.14.8    Hydrogen-bromine (H-Br) flow batteries 269
    • 3.14.9    Hydrogen-Manganese (H-Mn) flow batteries       270
    • 3.14.10  Organic flow batteries   271
    • 3.14.11  Hybrid Flow Batteries     272
      • 3.14.11.1              Zinc-Cerium Hybrid          272
      • 3.14.11.2              Zinc-Polyiodide Hybrid Flow Battery        272
      • 3.14.11.3              Zinc-Nickel Hybrid Flow Battery 273
      • 3.14.11.4              Zinc-Bromine Hybrid Flow Battery            274
      • 3.14.11.5              Vanadium-Polyhalide Flow Battery           274
    • 3.14.12  Global revenues               275
    • 3.14.13  Product developers        276
  • 3.15        ZN-BASED BATTERIES     277
    • 3.15.1    Technology description 277
      • 3.15.1.1                Zinc-Air batteries             277
      • 3.15.1.2                Zinc-ion batteries             279
      • 3.15.1.3                Zinc-bromide     279
    • 3.15.2    Market outlook 280
    • 3.15.3    Product developers        281

 

4              COMPANY PROFILES       282 (296 company profiles)

 

5              REFERENCES       537

 

 

List of Tables

  • Table 1. Battery chemistries used in electric buses.           42
  • Table 2. Micro EV types 43
  • Table 3. Battery Sizes for Different Vehicle Types.             46
  • Table 4. Competing technologies for batteries in electric boats.   48
  • Table 5. Competing technologies for batteries in grid storage.      53
  • Table 6. Competing technologies for batteries in consumer electronics    56
  • Table 7. Competing technologies for sodium-ion batteries in grid storage.              59
  • Table 8. Market drivers for use of advanced materials and technologies in batteries.         60
  • Table 9. Battery market megatrends.      63
  • Table 10. Advanced materials for batteries.          66
  • Table 11. Commercial Li-ion battery cell composition.      69
  • Table 12.  Lithium-ion (Li-ion) battery supply chain.           72
  • Table 13. Types of lithium battery.           73
  • Table 14. Li-ion battery anode materials.               77
  • Table 15. Manufacturing methods for nano-silicon anodes.           83
  • Table 16. Markets and applications for silicon anodes.     85
  • Table 17. Li-ion battery cathode materials.            91
  • Table 18. Key technology trends shaping lithium-ion battery cathode development.          91
  • Table 19. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries.        96
  • Table 20. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries.    97
  • Table 21. Properties of Lithium Manganese Oxide cathode material.         98
  • Table 22. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC).  99
  • Table 23. Properties of Lithium Nickel Cobalt Aluminum Oxide     100
  • Table 24. Comparison table of key lithium-ion cathode materials 102
  • Table 25. Li-ion battery Binder and conductive additive materials.              104
  • Table 26. Li-ion battery Separator materials.        105
  • Table 27. Li-ion battery market players.  106
  • Table 28. Typical lithium-ion battery recycling process flow.          107
  • Table 29. Main feedstock streams that can be recycled for lithium-ion batteries. 108
  • Table 30. Comparison of LIB recycling methods. 108
  • Table 31. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.              124
  • Table 32. Global revenues for Li-ion batteries, 2018-2034, by market (Billions USD).           125
  • Table 33. Applications for Li-metal batteries.       130
  • Table 34. Li-metal battery developers     132
  • Table 35. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types.   134
  • Table 36. Global revenues for Lithium-sulfur, 2018-2034, by market (Billions USD).             137
  • Table 37. Lithium-sulphur battery product developers.   138
  • Table 38. Product developers in Lithium titanate and niobate batteries.  142
  • Table 39. Comparison of cathode materials.         144
  • Table 40.  Layered transition metal oxide cathode materials for sodium-ion batteries.       144
  • Table 41. General cycling performance characteristics of common layered transition metal oxide cathode materials.                145
  • Table 42. Polyanionic materials for sodium-ion battery cathodes.               147
  • Table 43. Comparative analysis of different polyanionic materials.              147
  • Table 44.  Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries.                150
  • Table 45. Comparison of Na-ion battery anode materials.               152
  • Table 46. Hard Carbon producers for sodium-ion battery anodes.               153
  • Table 47. Comparison of carbon materials in sodium-ion battery anodes. 154
  • Table 48. Comparison between Natural and Synthetic Graphite. 156
  • Table 49. Properties of graphene, properties of competing materials, applications thereof.            160
  • Table 50. Comparison of carbon based anodes.  161
  • Table 51.  Alloying materials used in sodium-ion batteries.            161
  • Table 52. Na-ion electrolyte formulations.            163
  • Table 53. Pros and cons compared to other battery types.             164
  • Table 54. Cost comparison with Li-ion batteries. 165
  • Table 55. Key materials in sodium-ion battery cells.           165
  • Table 56. Product developers in aluminium-ion batteries.              179
  • Table 57. Types of solid-state electrolytes.            182
  • Table 58. Market segmentation and status for solid-state batteries.          183
  • Table 59.  Typical process chains for manufacturing key components and assembly of solid-state batteries.            184
  • Table 60. Comparison between liquid and solid-state batteries.  188
  • Table 61. Limitations of solid-state thin film batteries.     194
  • Table 62. Global revenues for All-Solid State Batteries, 2018-2034, by market (Billions USD).          195
  • Table 63. Solid-state thin-film battery market players.     197
  • Table 64. Flexible battery applications and technical requirements.           199
  • Table 65. Flexible Li-ion battery prototypes.         208
  • Table 66. Electrode designs in flexible lithium-ion batteries.          210
  • Table 67. Summary of fiber-shaped lithium-ion batteries.              213
  • Table 68. Types of fiber-shaped batteries.            225
  • Table 69. Global revenues for flexible batteries, 2018-2034, by market (Billions USD).       230
  • Table 70. Product developers in flexible batteries.             232
  • Table 71. Components of transparent batteries. 234
  • Table 72. Components of degradable batteries. 238
  • Table 73. Product developers in degradable batteries.     241
  • Table 74. Main components and properties of different printed battery types.     244
  • Table 75. Applications of printed batteries and their physical and electrochemical requirements. 248
  • Table 76. 2D and 3D printing techniques.              248
  • Table 77. Printing techniques applied to printed batteries.            250
  • Table 78. Main components and corresponding electrochemical values of lithium-ion printed batteries.   250
  • Table 79. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.    252
  • Table 80. Main 3D Printing techniques for battery manufacturing.             256
  • Table 81. Electrode Materials for 3D Printed Batteries.    258
  • Table 82. Global revenues for printed batteries, 2018-2034, by market (Billions USD).       260
  • Table 83. Product developers in printed batteries.            261
  • Table 84. Advantages and disadvantages of redox flow batteries.               264
  • Table 85. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications.       264
  • Table 86. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications.       265
  • Table 87. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications.              266
  • Table 88. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications.       267
  • Table 89. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications.                267
  • Table 90. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications.       268
  • Table 91. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications.              269
  • Table 92. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications.    270
  • Table 93. Organic flow batteries-key features, advantages, limitations, performance, components and applications.                271
  • Table 94. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications.       272
  • Table 95. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.       273
  • Table 96. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.       273
  • Table 97. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.       274
  • Table 98. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.              274
  • Table 99. Redox flow batteries product developers.         276
  • Table 100. ZN-based battery product developers.              281
  • Table 101. CATL sodium-ion battery characteristics.          328
  • Table 102. CHAM sodium-ion battery characteristics.       333
  • Table 103. Chasm SWCNT products.         334
  • Table 104. Faradion sodium-ion battery characteristics.  360
  • Table 105. HiNa Battery sodium-ion battery characteristics.          394
  • Table 106. Battery performance test specifications of J. Flex batteries.     414
  • Table 107. LiNa Energy battery characteristics.    431
  • Table 108. Natrium Energy battery characteristics.            450

 

List of Figures

  • Figure 1. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles.       38
  • Figure 2. Electric car Li-ion demand forecast (GWh), 2018-2034.  49
  • Figure 3. EV Li-ion battery market (US$B), 2018-2034.       50
  • Figure 4. Electric bus, truck and van battery forecast (GWh), 2018-2034.  51
  • Figure 5. Micro EV Li-ion demand forecast (GWh).            52
  • Figure 6. Lithium-ion battery grid storage demand forecast (GWh), 2018-2034.     55
  • Figure 7. Sodium-ion grid storage units. 55
  • Figure 8. Salt-E Dog mobile battery.         58
  • Figure 9. I.Power Nest - Residential Energy Storage System Solution.         59
  • Figure 10. Costs of batteries to 2030.       65
  • Figure 11. Lithium Cell Design.    70
  • Figure 12. Functioning of a lithium-ion battery.   71
  • Figure 13. Li-ion battery cell pack.             71
  • Figure 14. Li-ion electric vehicle (EV) battery.       75
  • Figure 15. SWOT analysis: Li-ion batteries.            77
  • Figure 16. Silicon anode value chain.        81
  • Figure 17. Li-cobalt structure.     95
  • Figure 18.  Li-manganese structure.         98
  • Figure 19. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials.               107
  • Figure 20. Flow chart of recycling processes of lithium-ion batteries (LIBs).             109
  • Figure 21. Hydrometallurgical recycling flow sheet.          111
  • Figure 22. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.    112
  • Figure 23. Umicore recycling flow diagram.           113
  • Figure 24. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.       114
  • Figure 25. Schematic of direct recyling process.  116
  • Figure 26. SWOT analysis for Direct Li-ion Battery Recycling.         120
  • Figure 27. Global revenues for Li-ion batteries, 2018-2034, by market (Billions USD).         126
  • Figure 28. Schematic diagram of a Li-metal battery.          126
  • Figure 29. SWOT analysis: Lithium-metal batteries.           132
  • Figure 30. Schematic diagram of Lithium–sulfur battery. 133
  • Figure 31. SWOT analysis: Lithium-sulfur batteries.           137
  • Figure 32. Global revenues for Lithium-sulfur, 2018-2034, by market (Billions USD).           138
  • Figure 33. Global revenues for Lithium titanate and niobate batteries, 2018-2034, by market (Billions USD).           142
  • Figure 34. Schematic of Prussian blue analogues (PBA).  149
  • Figure 35. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG). 155
  • Figure 36. Overview of graphite production, processing and applications.                157
  • Figure 37. Schematic diagram of a multi-walled carbon nanotube (MWCNT).        159
  • Figure 38. Schematic diagram of a Na-ion battery.             167
  • Figure 39. SWOT analysis: Sodium-ion batteries. 169
  • Figure 40. Global revenues for sodium-ion batteries, 2018-2034, by market (Billions USD).              169
  • Figure 41.  Schematic of a Na–S battery. 172
  • Figure 42. SWOT analysis: Sodium-sulfur batteries.           175
  • Figure 43. Saturnose battery chemistry. 176
  • Figure 44. SWOT analysis: Aluminium-ion batteries.         178
  • Figure 45. Global revenues for aluminium-ion batteries, 2018-2034, by market (Billions USD).       179
  • Figure 46. Schematic illustration of all-solid-state lithium battery.              181
  • Figure 47. ULTRALIFE thin film battery.   182
  • Figure 48. Examples of applications of thin film batteries.              185
  • Figure 49. Capacities and voltage windows of various cathode and anode materials.          186
  • Figure 50. Traditional lithium-ion battery (left), solid state battery (right).               188
  • Figure 51. Bulk type compared to thin film type SSB.        192
  • Figure 52. SWOT analysis: All-solid state batteries.            193
  • Figure 53. Global revenues for All-Solid State Batteries, 2018-2034, by market (Billions USD).        196
  • Figure 54. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.    199
  • Figure 55. Flexible, rechargeable battery.              200
  • Figure 56. Various architectures for flexible and stretchable electrochemical energy storage.        201
  • Figure 57. Types of flexible batteries.      203
  • Figure 58. Flexible label and printed paper battery.           204
  • Figure 59. Materials and design structures in flexible lithium ion batteries.             207
  • Figure 60. Flexible/stretchable LIBs with different structures.      210
  • Figure 61. Schematic of the structure of stretchable LIBs.               211
  • Figure 62. Electrochemical performance of materials in flexible LIBs.         211
  • Figure 63. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.  214
  • Figure 64. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f) 215
  • Figure 65. Origami disposable battery.    216
  • Figure 66. Zn–MnO2 batteries produced by Brightvolt.    219
  • Figure 67. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries.           221
  • Figure 68. Zn–MnO2 batteries produced by Blue Spark.   222
  • Figure 69. Ag–Zn batteries produced by Imprint Energy. 222
  • Figure 70.  Wearable self-powered devices.         228
  • Figure 71. SWOT analysis: Flexible  batteries.       230
  • Figure 72. Global revenues for flexible batteries, 2018-2034, by market (Billions USD).      231
  • Figure 73. Transparent batteries.              234
  • Figure 74. SWOT analysis: Transparent batteries.               236
  • Figure 75. Degradable batteries. 237
  • Figure 76. SWOT analysis: Degradable batteries. 241
  • Figure 77. Various applications of printed paper batteries.             243
  • Figure 78.Schematic representation of the main components of a battery.             243
  • Figure 79. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.     245
  • Figure 80. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                255
  • Figure 81. SWOT analysis: Printed batteries.        260
  • Figure 82. Global revenues for printed batteries, 2018-2034, by market (Billions USD).     261
  • Figure 83. Scheme of a redox flow battery.           263
  • Figure 84. Global revenues for redox flow batteries, 2018-2034, by market (Billions USD).               276
  • Figure 85. 24M battery. 283
  • Figure 86. AC biode prototype.  285
  • Figure 87. Schematic diagram of liquid metal battery operation. 295
  • Figure 88. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).             296
  • Figure 89. Amprius battery products.      298
  • Figure 90. All-polymer battery schematic.             301
  • Figure 91. All Polymer Battery Module.  301
  • Figure 92. Resin current collector.             302
  • Figure 93. Ateios thin-film, printed battery.          304
  • Figure 94. The structure of aluminum-sulfur battery from Avanti Battery.               307
  • Figure 95. Containerized NAS® batteries.              309
  • Figure 96. 3D printed lithium-ion battery.             314
  • Figure 97. Blue Solution module.               316
  • Figure 98. TempTraq wearable patch.     317
  • Figure 99. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.               335
  • Figure 100. Cymbet EnerChip™  340
  • Figure 101. E-magy nano sponge structure.          348
  • Figure 102. Enerpoly zinc-ion battery.     349
  • Figure 103. SoftBattery®.             350
  • Figure 104. ASSB All-Solid-State Battery by EGI 300 Wh/kg.           352
  • Figure 105. Roll-to-roll equipment working with ultrathin steel substrate.              354
  • Figure 106. 40 Ah battery cell.    359
  • Figure 107. FDK Corp battery.     363
  • Figure 108. 2D paper batteries.  371
  • Figure 109. 3D Custom Format paper batteries.  371
  • Figure 110. Fuji carbon nanotube products.         372
  • Figure 111. Gelion Endure battery.           375
  • Figure 112. Portable desalination plant. 375
  • Figure 113. Grepow flexible battery.       387
  • Figure 114. HPB solid-state battery.         393
  • Figure 115. HiNa Battery pack for EV.      395
  • Figure 116. JAC demo EV powered by a HiNa Na-ion battery.        395
  • Figure 117. Nanofiber Nonwoven Fabrics from Hirose.     396
  • Figure 118. Hitachi Zosen solid-state battery.      397
  • Figure 119. Ilika solid-state batteries.      401
  • Figure 120. ZincPoly™ technology.            402
  • Figure 121. TAeTTOOz printable battery materials.            406
  • Figure 122. Ionic Materials battery cell.  410
  • Figure 123. Schematic of Ion Storage Systems solid-state battery structure.           411
  • Figure 124. ITEN micro batteries.              412
  • Figure 125. Kite Rise’s A-sample sodium-ion battery module.       420
  • Figure 126. LiBEST flexible battery.           426
  • Figure 127. Li-FUN sodium-ion battery cells.         429
  • Figure 128. LiNa Energy battery. 431
  • Figure 129. 3D solid-state thin-film battery technology.  433
  • Figure 130. Lyten batteries.         436
  • Figure 131. Cellulomix production process.           439
  • Figure 132. Nanobase versus conventional products.       439
  • Figure 133. Nanotech Energy battery.     449
  • Figure 134. Hybrid battery powered electrical motorbike concept.             452
  • Figure 135. NBD battery.              454
  • Figure 136. Schematic illustration of three-chamber system for SWCNH production.          455
  • Figure 137. TEM images of carbon nanobrush.    456
  • Figure 138. EnerCerachip.            460
  • Figure 139. Cambrian battery.    471
  • Figure 140. Printed battery.         475
  • Figure 141. Prieto Foam-Based 3D Battery.           477
  • Figure 142. Printed Energy flexible battery.          480
  • Figure 143. ProLogium solid-state battery.            482
  • Figure 144. QingTao solid-state batteries.             484
  • Figure 145. Schematic of the quinone flow battery.          486
  • Figure 146. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.      489
  • Figure 147. Salgenx S3000 seawater flow battery.             491
  • Figure 148. Samsung SDI's sixth-generation prismatic batteries.  493
  • Figure 149. SES Apollo batteries.               498
  • Figure 150. Sionic Energy battery cell.     505
  • Figure 151. Solid Power battery pouch cell.           507
  • Figure 152. Stora Enso lignin battery materials.   510
  • Figure 153.TeraWatt Technology solid-state battery         517
  • Figure 154. Zeta Energy 20 Ah cell.           534
  • Figure 155. Zoolnasm batteries. 535

 

The Global Market for Advanced Batteries 2024-2034
The Global Market for Advanced Batteries 2024-2034
PDF download/by email.

The Global Market for Advanced Batteries 2024-2034
The Global Market for Advanced Batteries 2024-2034
PDF and print edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.