The Global Market for Advanced Materials & Technologies for Energy Production, Storage & Harvesting

0

Published November 2022 | 825 pages, 166 figures, 94 tables | Download table of contents

Advanced materials innovation is greatly improving energy production. The development of new materials for high capacity and sustainable advanced energy storage, generation and harvesting technologies is key to the implementation of renewable solutions for energy networks. The Global Market for Advanced Materials & Technologies for Energy Production, Storage & Harvesting covers recent advancements in Batteries, Supercapacitors, Fuel Cells, Photovoltaics, Energy Harvesting and Wind Turbines including technologies, materials, markets, applications, revenues, and companies.

Materials and technologies covered include:

  • Li-ion batteries and variations, current market and recent activity covering advanced materials innovations. 
  • Solid-state thin-film batteries.
  • Flexible, stretchable, rollable and bendable batteries.
  • Supercapacitors.
  • Chemical energy storage-Power-to-gas (PtG) and Power-to-liquid (PtL).
  • Thermal energy storage (phase change materials, reversible thermochemical reactions).
  • Fuel cells (PEM, solid oxide)
  • Advanced composites for wind turbine blades. 
  • Anti-corrosion coatings for offshore installations.
  • Photovoltaic technologies (thin-film, flexible, DSCC, organic, perovskite, inorganic silicon PV alternatives, tandem PV, concentrated solar power, agrivoltaics, Floating PV, BIPV).
  • Energy harvesting including marine energy harvesting. 
  • Materials that generate electricity from vibration. 

 

Report contents include:

  • In-depth analysis of advanced materials and technologies for Batteries, Supercapacitors, Fuel Cells, Photovoltaics, Energy Harvesting and Wind Turbines. 
  • Market trends and future outlook. 
  • Global revenues, by market and technologies, historical and estimated to 2033. 
  • More than 500 company profiles. Companies profiled include Nanoramic, NAWA Technologies, Nano One Materials, Birla Carbon, Brilliant Matters, Epishine, Heliatek, Salient Energy, Enerpoly, Skeleton Technologies, Ioxus, Yunasko, Ilika, UniEnergy Technologies, Amprius, TFP Hydrogen, Aquacycl, QD Solar, Onyx Solar, Brite Solar, Ciel & Terre, Vast Solar, Sunew, Ocean Harvesting Technologies and Nowi Energy. 

 

 

1              RESEARCH METHODOLOGY         41

 

2              ENERGY STORAGE            43

  • 2.1          Batteries              43
    • 2.1.1      Current market for batteries       43
    • 2.1.2      Market drivers  45
      • 2.1.2.1   Battery market megatrends        48
      • 2.1.2.2   Global battery market 2015-2033, billions USD   51
    • 2.1.3      Advanced materials for batteries              53
    • 2.1.4      Flexible and stretchable batteries for electronics                56
    • 2.1.5      Li-ion batteries and variations     59
      • 2.1.5.1   Technology description 59
        • 2.1.5.1.1               Types of Lithium Batteries            59
      • 2.1.5.2   Anodes 60
        • 2.1.5.2.1               Materials             62
        • 2.1.5.2.2               Silicon anodes   66
      • 2.1.5.3   Cathodes             68
        • 2.1.5.3.1               Materials             69
          • 2.1.5.3.1.1           LCO and LFP       70
            • 2.1.5.3.1.1.1        Lithium Cobalt Oxide(LiCoO2) — LCO       71
            • 2.1.5.3.1.1.2        Lithium Iron Phosphate(LiFePO4) — LFP 72
          • 2.1.5.3.1.2           Layered oxide (NMC, NCA) and LMO        73
            • 2.1.5.3.1.2.1        Lithium Manganese Oxide (LiMn2O4) — LMO      74
            • 2.1.5.3.1.2.2        Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC   75
            • 2.1.5.3.1.2.3        Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA         76
      • 2.1.5.4   Binders and conductive additives              76
        • 2.1.5.4.1               Materials             76
      • 2.1.5.5   Separators          77
        • 2.1.5.5.1               Materials             77
      • 2.1.5.6   Li-ion battery Market players      77
      • 2.1.5.7   Lithium-metal batteries 78
        • 2.1.5.7.1               Technology description 78
        • 2.1.5.7.2               Applications       79
        • 2.1.5.7.3               Product developers        79
      • 2.1.5.8   Lithium-sulphur batteries             80
        • 2.1.5.8.1               Technology description 80
        • 2.1.5.8.2               Product developers        82
      • 2.1.5.9   Lithium titanate and niobate batteries    82
        • 2.1.5.9.1               Technology description 83
        • 2.1.5.9.2               Product developers        83
      • 2.1.5.10                Sodium-ion (Na-ion) Batteries    85
        • 2.1.5.10.1             Technology description 85
        • 2.1.5.10.2             Cathode Materials           86
        • 2.1.5.10.3             Anode Materials               87
        • 2.1.5.10.4             Aqueous rechargeable sodium ion batteries (ASIBs)         87
        • 2.1.5.10.5             Markets               88
        • 2.1.5.10.6             Product developers        89
      • 2.1.5.11                Aluminium-ion batteries               92
        • 2.1.5.11.1             Technology description 92
        • 2.1.5.11.2             Product development    93
      • 2.1.5.12                Global market to 2033 (revenues)            94
    • 2.1.6      Solid-state thin-film batteries     97
      • 2.1.6.1   Features and advantages              98
      • 2.1.6.2   Technical specifications 99
      • 2.1.6.3   Types    101
      • 2.1.6.4   Microbatteries  102
        • 2.1.6.4.1               Introduction       102
        • 2.1.6.4.2               Materials             103
        • 2.1.6.4.3               Applications       103
      • 2.1.6.4.4               3D designs          104
        • 2.1.6.4.4.1           3D printed batteries       104
      • 2.1.6.5   Bulk type solid-state batteries    105
      • 2.1.6.6   Shortcomings and market challenges for solid-state thin film batteries     105
      • 2.1.6.7   Market players  107
      • 2.1.6.8   Global market to 2033, by types and markets (revenues) 107
        • 2.1.6.8.1               Solid-state batteries segment     109
    • 2.1.7      Flexible batteries (including stretchable, rollable, bendable and foldable)               109
      • 2.1.7.1   Technical specifications 111
        • 2.1.7.1.1               Approaches to flexibility                112
      • 2.1.7.2   Flexible electronics          115
        • 2.1.7.2.1               Flexible materials             116
      • 2.1.7.3   Flexible and wearable Metal-sulfur batteries       117
      • 2.1.7.4   Flexible and wearable Metal-air batteries              118
      • 2.1.7.5   Flexible Lithium-ion Batteries     118
        • 2.1.7.5.1               Electrode designs             121
        • 2.1.7.5.2               Fiber-shaped Lithium-Ion batteries          124
        • 2.1.7.5.3               Stretchable lithium-ion batteries               125
        • 2.1.7.5.4               Origami and kirigami lithium-ion batteries            127
      • 2.1.7.6   Flexible Li/S batteries     128
        • 2.1.7.6.1               Components      129
        • 2.1.7.6.2               Carbon nanomaterials    129
      • 2.1.7.7   Flexible lithium-manganese dioxide (Li–MnO2) batteries 130
      • 2.1.7.8   Flexible zinc-based batteries       130
        • 2.1.7.8.1               Components      131
          • 2.1.7.8.1.1           Anodes 131
          • 2.1.7.8.1.2           Cathodes             132
        • 2.1.7.8.2               Challenges          132
        • 2.1.7.8.3               Flexible zinc-manganese dioxide (Zn–Mn) batteries          132
        • 2.1.7.8.4               Flexible silver–zinc (Ag–Zn) batteries       133
        • 2.1.7.8.5               Flexible Zn–Air batteries               134
        • 2.1.7.8.6               Flexible zinc-vanadium batteries               135
      • 2.1.7.9   Fiber-shaped batteries  136
        • 2.1.7.9.1               Carbon nanotubes           136
        • 2.1.7.9.2               Types    136
        • 2.1.7.9.3               Applications       138
        • 2.1.7.9.4               Challenges          138
      • 2.1.7.10                Transparent batteries    139
        • 2.1.7.10.1             Components      140
      • 2.1.7.11                Degradable batteries      141
        • 2.1.7.11.1             Components      142
        • 2.1.7.11.2             Energy harvesting combined with wearable energy storage devices          143
    • 2.1.8      Printed batteries              147
      • 2.1.8.1   Technical specifications 147
        • 2.1.8.1.1               Components      148
          • 2.1.8.1.1.1           Design  150
        • 2.1.8.1.2               Key features      151
        • 2.1.8.1.3               Printable current collectors          151
        • 2.1.8.1.4               Printable electrodes       151
        • 2.1.8.1.5               Materials             152
        • 2.1.8.1.6               Applications       152
        • 2.1.8.1.7               Printing techniques         154
        • 2.1.8.1.8               Applications       156
      • 2.1.8.2   Lithium-ion (LIB) printed batteries            157
      • 2.1.8.3   Zinc-based printed batteries       158
      • 2.1.8.4   3D Printed batteries       161
        • 2.1.8.4.1               3D Printing techniques for battery manufacturing             163
        • 2.1.8.4.2               Materials for 3D printed batteries            164
          • 2.1.8.4.2.1           Electrode materials         164
          • 2.1.8.4.2.2           Electrolyte Materials      165
    • 2.1.9      Redox Flow Batteries      167
      • 2.1.9.1   Technology description 167
      • 2.1.9.2   Markets               168
      • 2.1.9.3   Product developers        169
    • 2.1.10    ZN-based batteries         171
      • 2.1.10.1                Technology description 171
        • 2.1.10.1.1             Zinc-Air batteries             172
        • 2.1.10.1.2             Zinc-ion batteries             174
        • 2.1.10.1.3             Zinc-bromide     176
        • 2.1.10.1.4             Product developers        178
    • 2.1.11    Company profiles             179 (214 company profiles)
  • 2.2          Supercapacitors 372
    • 2.2.1      Technology description 372
      • 2.2.1.1   Electrostatic double-layer capacitors (EDLC)         373
      • 2.2.1.2   Pseudocapacitors            374
        • 2.2.1.2.1               Pseudocapacitive materials         374
        • 2.2.1.2.2               Performance     375
      • 2.2.1.3   Hybrid capacitors             377
      • 2.2.1.4   Advantages and disadvantages  377
    • 2.2.2      Electrolytes        378
    • 2.2.3      Conductive hydrogels    379
    • 2.2.4      Flexible and stretchable supercapacitors               381
      • 2.2.4.1   Flexible wearable supercapacitors            383
      • 2.2.4.2   Paper supercapacitors   385
      • 2.2.4.3   Flexible printed circuits  386
      • 2.2.4.4   Micro-supercapacitors   387
      • 2.2.4.5   Materials             388
        • 2.2.4.5.1               Graphene           389
        • 2.2.4.5.2               Carbon nanotubes           392
        • 2.2.4.5.3               Nanodiamonds 394
        • 2.2.4.5.4               Carbon nanofibers           396
        • 2.2.4.5.5               Carbon aerogels               397
        • 2.2.4.5.6               Graphene aerogels         397
        • 2.2.4.5.7               Cellulose nanocrystal aerogels   398
        • 2.2.4.5.8               Carbon nano-onions       399
        • 2.2.4.5.9               MXenes               399
        • 2.2.4.5.10             Metal Organic Frameworks (MOF)           401
        • 2.2.4.5.11             Diamond              401
        • 2.2.4.5.12             Other 2D materials          402
    • 2.2.5      Printed supercapacitors 402
      • 2.2.5.1.1               Electrode materials         404
      • 2.2.5.1.2               Electrolytes        405
    • 2.2.6      Markets for supercapacitors        410
      • 2.2.6.1   Automotive        410
      • 2.2.6.2   Transportation  411
      • 2.2.6.3   Power grid          413
      • 2.2.6.4   Industrial             415
    • 2.2.7      Company profiles             415 (34 company profiles)
  • 2.3          Chemical energy storage              445
    • 2.3.1      Power-to-gas (PtG)         445
    • 2.3.2      Power-to-liquid (PtL)      446
    • 2.3.3      Benefits of e-fuels           449
    • 2.3.4      Feedstocks         450
      • 2.3.4.1   Hydrogen electrolysis     450
      • 2.3.4.2   CO2 capture       451
    • 2.3.5      Production          451
    • 2.3.6      Electrolysers      454
      • 2.3.6.1   Commercial alkaline electrolyser cells (AECs)       455
      • 2.3.6.2   PEM electrolysers (PEMEC)         455
      • 2.3.6.3   High-temperature solid oxide electrolyser cells (SOECs)  456
    • 2.3.7      Direct Air Capture (DAC)               456
      • 2.3.7.1   Technologies     457
      • 2.3.7.2   Markets for DAC               458
      • 2.3.7.3   Costs     459
      • 2.3.7.4   Challenges          460
      • 2.3.7.5   Companies and production          460
      • 2.3.7.6   CO2 capture from point sources 462
    • 2.3.8      Costs     462
    • 2.3.9      Market challenges           465
    • 2.3.10    Companies         466
  • 2.4          Thermal energy storage 467
    • 2.4.1      Sensible heat storage     467
    • 2.4.2      Latent heat storage         468
    • 2.4.3      Reversible thermochemical reactions      468
    • 2.4.4      Phase change materials 470
      • 2.4.4.1   Markets               470
      • 2.4.4.2   Properties of Phase Change Materials (PCMs)     471
      • 2.4.4.3   Types    472
        • 2.4.4.3.1               Organic/biobased phase change materials            473
          • 2.4.4.3.1.1           Advantages and disadvantages  474
          • 2.4.4.3.1.2           Paraffin wax       474
          • 2.4.4.3.1.3           Non-Paraffins/Bio-based              475
        • 2.4.4.3.2               Inorganic phase change materials             476
          • 2.4.4.3.2.1           Salt hydrates      476
          • 2.4.4.3.2.2           Metal and metal alloy PCMs (High-temperature) 477
            • 2.4.4.3.2.1.1        Advantages and disadvantages  477
        • 2.4.4.3.3               Eutectic mixtures             478
        • 2.4.4.3.4               Encapsulation of PCMs  478
          • 2.4.4.3.4.1           Macroencapsulation       479
          • 2.4.4.3.4.2           Micro/nanoencapsulation            479
        • 2.4.4.3.5               Nanomaterial phase change materials     480
      • 2.4.4.4   Global revenues, 2019-2033        480
        • 2.4.4.4.1               By type 480
        • 2.4.4.4.2               By market           481
    • 2.4.5      Companies         484 (51 company profiles)
  • 2.5          Advanced Battery Analytics         529

 

3              FUEL CELLS          531

  • 3.1          Introduction       531
  • 3.2          Fuel cell technologies     533
    • 3.2.1      Proton exchange membrane (PEM) (PEMFC)       534
      • 3.2.1.1   High temperature PEMFC (HT-PEMFC)   536
      • 3.2.1.2   Components, materials and producers   537
    • 3.2.2      Solid oxide fuel cells        540
      • 3.2.2.1   Electrolytes        540
    • 3.2.3      Other fuel cell types       542
  • 3.3          Markets and applications              543
    • 3.3.1      Electric vehicles market 544
  • 3.4          Market players  545
  • 3.5          Global market to 2033, by markets (revenues)    545
  • 3.6          Company profiles             546 (41 company profiles)

 

4              PHOTOVOLTAICS             573

  • 4.1          Global Solar PV market  574
  • 4.2          Thin film and Flexible Solar Cells 576
    • 4.2.1      Dye sensitized solar cells               576
      • 4.2.1.1   DSSC materials  578
    • 4.2.2      Organic Photovoltaics    580
      • 4.2.2.1   Organic PV materials      580
    • 4.2.3      Perovskite solar cells       581
      • 4.2.3.1   Introduction       582
      • 4.2.3.2   Material components    583
      • 4.2.3.3   Energy harvesting            586
      • 4.2.3.4   Thin film perovskite solar cells    586
        • 4.2.3.4.1               Technology description 586
        • 4.2.3.4.2               Markets and applications              587
        • 4.2.3.4.3               Product developers        587
      • 4.2.3.5   Tandem perovskite PV   589
        • 4.2.3.5.1               Technology description 589
        • 4.2.3.5.2               Markets and applications              590
        • 4.2.3.5.3               Product developers        590
    • 4.2.4      Inorganic silicon PV alternatives 591
      • 4.2.4.1   Cadmium Telluride (CdTe)            593
      • 4.2.4.2   Copper Indium Gallium Selenide (CIGS)  595
      • 4.2.4.3   Gallium Arsenide             596
      • 4.2.4.4   Amorphous Silicon           597
      • 4.2.4.5   Copper Zinc Tin Sulfide (CZTS)    598
    • 4.2.5      Tandem photovoltaics   599
    • 4.2.6      Metamaterials  601
    • 4.2.7      Deposition Methods       602
  • 4.3          Market players  604
  • 4.4          Concentrated solar power            608
    • 4.4.1      Technology description 609
    • 4.4.2      Commercialization           610
  • 4.5          Agrivoltaics         611
    • 4.5.1      Technology description 611
    • 4.5.2      Commercialization           612
  • 4.6          Building Integrated Photovoltaics (BIPV) 613
    • 4.6.1      Photovoltaic glazing        615
    • 4.6.2      Dye-sensitized solar cells (DSSCs)              616
    • 4.6.3      Organic solar cells (OSCs)             616
    • 4.6.4      Perovskite solar cells (PSCs)        617
    • 4.6.5      Quantum dot solar cells (QDSCs)               617
    • 4.6.6      Copper zinc tin sulphide solar cells (CZTS)             618
  • 4.7          Floating photovoltaics (FPV)        619
  • 4.8          Global market for PV solar cells to 2033, by technology (revenues)            621
  • 4.9          Company profiles             622 (97 company profiles)

 

5              ENERGY HARVESTING    696

  • 5.1          Energy harvesting in sensors and smart buildings               696
    • 5.1.1      Piezoelectric materials   700
    • 5.1.2      Thermoelectric materials              701
  • 5.2          Energy harvesting for powering smartwatches    703
    • 5.2.1      Conductive and stretchable yarns             705
    • 5.2.2      Conductive polymers     706
      • 5.2.2.1   PDMS    707
      • 5.2.2.2   PEDOT: PSS         708
  • 5.3          Automotive        710
  • 5.4          Metamaterials  711
  • 5.5          Powering E-textiles         712
    • 5.5.1      Supercapacitors 712
    • 5.5.2      Batteries              712
    • 5.5.3      Energy harvesting            715
      • 5.5.3.1   Photovoltaic solar textiles            715
      • 5.5.3.2   Energy harvesting nanogenerators           716
      • 5.5.3.3   TENGs   717
      • 5.5.3.4   PENGs  717
      • 5.5.3.5   Radio frequency (RF) energy harvesting 718
  • 5.6          Marine energy harvesting            719
  • 5.7          Company profiles             720 (56 company profiles)

 

6              WIND TURBINES               781

  • 6.1          Advanced composites    782
  • 6.2          Corrosion-resistant coatings for offshore installations      784
  • 6.3          Companies         785

 

7              REFERENCES       788

 

List of Tables

  • Table 1. Market drivers for use of advanced materials and technologies in batteries.         45
  • Table 2. Battery market megatrends.      48
  • Table 3. Advanced materials for batteries.            54
  • Table 4. Li-ion battery anode materials.  62
  • Table 5. Li-ion battery cathode materials.              69
  • Table 6. Properties of Lithium Cobalt Oxide.         71
  • Table 7. Properties of Lithium Iron Phosphate     73
  • Table 8. Properties of Lithium Manganese Oxide 74
  • Table 9. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC).     75
  • Table 10. Properties of Lithium Nickel Cobalt Aluminum Oxide     76
  • Table 11. Li-ion battery Binder and conductive additive materials.              76
  • Table 12. Li-ion battery Separator materials.        77
  • Table 13. Li-ion battery market players.  77
  • Table 14. Li-metal battery developers     80
  • Table 15. Lithium-sulphur battery product developers.   82
  • Table 16. Properties of Lithium Nickel Cobalt Aluminum Oxide     83
  • Table 17. Product developers in Lithium titanate and niobate batteries.  84
  • Table 18. Comparison of Sodium ion vs Lithium Ion Batteries.      87
  • Table 19. Markets for Sodium-ion batteries.         88
  • Table 20. Product developers in sodium-ion batteries.     90
  • Table 21. Market segmentation and status for solid-state batteries.          97
  • Table 22. Shortcoming of solid-state thin film batteries.  105
  • Table 23. Solid-state thin-film battery market players.     107
  • Table 24. Flexible battery applications and technical requirements.           111
  • Table 25. Flexible Li-ion battery prototypes.         119
  • Table 26. Electrode designs in flexible lithium-ion batteries.          121
  • Table 27. Summary of fiber-shaped lithium-ion batteries.              124
  • Table 28. Types of fiber-shaped batteries.            136
  • Table 29. Components of transparent batteries. 140
  • Table 30. Components of degradable batteries. 142
  • Table 31. Main components and properties of different printed battery types.     149
  • Table 32. Applications of printed batteries and their physical and electrochemical requirements. 152
  • Table 33. 2D and 3D printing techniques.              155
  • Table 34. Printing techniques applied to printed batteries.            156
  • Table 35. Main components and corresponding electrochemical values of lithium-ion printed batteries.   157
  • Table 36. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.    159
  • Table 37. Main 3D Printing techniques for battery manufacturing.             163
  • Table 38. Electrode Materials for 3D Printed Batteries.    164
  • Table 39. Redox flow batteries product developers.         169
  • Table 40. ZN-based battery product developers. 178
  • Table 41. 3DOM separator.          183
  • Table 42. Chasm SWCNT products.           222
  • Table 43. Battery performance test specifications of J. Flex batteries.       280
  • Table 44.  Pros and cons of supercapacitors.        377
  • Table 45. Properties and applications of conductive hydrogels.    379
  • Table 46. Hydrogels in supercapacitors. 380
  • Table 47. Applications of advanced materials in supercapacitors, by advanced materials type and benefits thereof.                383
  • Table 48. Graphene in supercapacitors-Market age, applications, Key benefits and motivation for use, Graphene concentration.  389
  • Table 49. Comparative properties of graphene supercapacitors and lithium-ion batteries.               391
  • Table 50. Market and applications for carbon nanotubes in supercapacitors.         392
  • Table 51. Market overview for nanodiamonds in supercapacitors.              394
  • Table 52. Nanodiamonds in supercapacitors. Market age, applications, Key benefits and motivation for use, concentration    395
  • Table 53. Other 2D materials for supercapacitors.             402
  • Table 54. Methods for printing supercapacitors. 403
  • Table 55. Electrode Materials for printed supercapacitors.             404
  • Table 56. Electrolytes for printed supercapacitors.            405
  • Table 57. Main properties and components of printed supercapacitors.   406
  • Table 58. Markets for supercapacitors.   410
  • Table 59. Applications of e-fuels, by type.             448
  • Table 60. Overview of e-fuels.    449
  • Table 61. Benefits of e-fuels.      449
  • Table 62. Main characteristics of different electrolyzer technologies.        454
  • Table 63. Advantages and disadvantages of DAC.               456
  • Table 64. DAC companies and technologies.         458
  • Table 65. Markets for DAC.          458
  • Table 66. Cost estimates of DAC.               459
  • Table 67. Challenges for DAC technology.              460
  • Table 68. DAC technology developers and production.    461
  • Table 69. Market challenges for e-fuels. 465
  • Table 70. Power to gas (PtG) and power to liquids (PtL) companies.           466
  • Table 71. Properties of PCMs.     471
  • (b)          Table 72.  PCM Types and properties.     473
  • Table 73. Advantages and disadvantages of organic PCMs.            474
  • Table 74. Advantages and disadvantages of organic PCM Fatty Acids.        475
  • Table 75. Advantages and disadvantages of salt hydrates               477
  • Table 76. Advantages and disadvantages of low melting point metals.      477
  • Table 77. Advantages and disadvantages of eutectics.     478
  • Table 78. Global revenues for phase change materials, 2019, by type.      481
  • Table 79. Global revenues for phase change materials, 2020, by type.      481
  • Table 80. Global revenues for phase change materials, 2019-2032, by market, conservative estimate (millions USD).                481
  • Table 81. Global revenues for phase change materials, 2019-2032, by market, high estimate (millions USD).           483
  • Table 82. CrodaTherm Range.     493
  • Table 83. Comparison of fuel cell technologies.   533
  • Table 84. SOFC and PEMFC comparison. 540
  • Table 85. Other fuel cell types.   542
  • Table 86. Markets and applications for fuel cells.                543
  • Table 87. Main market players in fuel cells.           545
  • Table 88. Product developers in thin film perovskite photovoltaics.           587
  • Table 89. Product developers in tandem perovskite photovoltaics.            590
  • Table 90. Technologies generating electricity in smart buildings. 698
  • Table 91. Types of flexible conductive polymers, properties and applications.        708
  • Table 92. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance.  713
  • Table 93. Anti-corrosion coatings for offshore installations.           784
  • Table 94. Companies developing advanced composites and coatings for wind power.        785

 

List of Figures

  • Figure 1. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles.       44
  • Figure 2. Costs of batteries to 2030.          51
  • Figure 3. Global battery market 2015-2033, billions USD.                53
  • Figure 4. Flexible batteries on the market.            56
  • Figure 5. Examples of flexible electronics devices.             58
  • Figure 6. Lithium-ion cell.              60
  • Figure 7. Silicon anode value chain.          66
  • Figure 8. Li-ion electric vehicle (EV) battery.         68
  • Figure 9. Li-cobalt structure.       71
  • Figure 10.  Li-manganese structure.         74
  • Figure 11. Saturnose battery chemistry. 94
  • Figure 12.  Revenues for Li-ion batteries and variations 2021-2033, by market, billions USD.           96
  • Figure 13. ULTRALIFE thin film battery.   97
  • Figure 14. Examples of applications of thin film batteries.              100
  • Figure 15. Capacities and voltage windows of various cathode and anode materials.          100
  • Figure 16. Traditional lithium-ion battery (left), solid state battery (right).               102
  • Figure 17. Bulk type compared to thin film type SSB.        105
  • Figure 18.  Revenues for thin film, flexible and printed batteries 2021-2033, by market, millions USD (excluding thin film solid-state batteries).            108
  • Figure 19. The global market for solid-state batteries, 2018-2033, millions USD.   109
  • Figure 20. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.    110
  • Figure 21. Flexible, rechargeable battery.              112
  • Figure 22. Various architectures for flexible and stretchable electrochemical energy storage.        113
  • Figure 23. Types of flexible batteries.      115
  • Figure 24. Flexible label and printed paper battery.           115
  • Figure 25. Materials and design structures in flexible lithium ion batteries.             119
  • Figure 26. Flexible/stretchable LIBs with different structures.      121
  • Figure 27. Schematic of the structure of stretchable LIBs.               122
  • Figure 28. Electrochemical performance of materials in flexible LIBs.         122
  • Figure 29. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.  125
  • Figure 30. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f) 127
  • Figure 31. Origami disposable battery.    128
  • Figure 32. Zn–MnO2 batteries produced by Brightvolt.    130
  • Figure 33. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries.           133
  • Figure 34. Zn–MnO2 batteries produced by Blue Spark.   133
  • Figure 35. Ag–Zn batteries produced by Imprint Energy. 134
  • Figure 36. Transparent batteries.              139
  • Figure 37. Degradable batteries. 141
  • Figure 38.  Wearable self-powered devices.         145
  • Figure 39. Various applications of printed paper batteries.             148
  • Figure 40.Schematic representation of the main components of a battery.             148
  • Figure 41. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.     150
  • Figure 42. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                162
  • Figure 43. 24M battery. 181
  • Figure 44. 3DOM battery.             183
  • Figure 45. AC biode prototype.  185
  • Figure 46. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).             194
  • Figure 47. Amprius battery products.      196
  • Figure 48. All-polymer battery schematic.             199
  • Figure 49. All Polymer Battery Module.  199
  • Figure 50. Resin current collector.             200
  • Figure 51. Ateios thin-film, printed battery.          201
  • Figure 52. 3D printed lithium-ion battery.             207
  • Figure 53. Blue Solution module.               209
  • Figure 54. TempTraq wearable patch.     211
  • Figure 55. Exide Batteries Lead Acid Battery.        222
  • Figure 56. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.               224
  • Figure 57. Cymbet EnerChip™    226
  • Figure 58. E-magy nano sponge structure.             232
  • Figure 59. SoftBattery®. 234
  • Figure 60. Roll-to-roll equipment working with ultrathin steel substrate. 235
  • Figure 61. 40 Ah battery cell.       240
  • Figure 62. FDK Corp battery.       243
  • Figure 63. 2D paper batteries.    249
  • Figure 64. 3D Custom Format paper batteries.    249
  • Figure 65. Fuji carbon nanotube products.            250
  • Figure 66. Gelion Endure battery.             253
  • Figure 67. Portable desalination plant.    253
  • Figure 68. Grepow flexible battery.          261
  • Figure 69. Nanofiber Nonwoven Fabrics from Hirose.       269
  • Figure 70. Hitachi Zosen solid-state battery.         270
  • Figure 71. Ilika solid-state batteries.        273
  • Figure 72. ZincPoly™ technology.              274
  • Figure 73. TAeTTOOz printable battery materials.              275
  • Figure 74. Ionic Materials battery cell.     277
  • Figure 75. Schematic of Ion Storage Systems solid-state battery structure.             278
  • Figure 76. ITEN micro batteries. 279
  • Figure 77. LiBEST flexible battery.             289
  • Figure 78. 3D solid-state thin-film battery technology.     291
  • Figure 79. Lyten batteries.           293
  • Figure 80. Cellulomix production process.             296
  • Figure 81. Nanobase versus conventional products.          297
  • Figure 82. Nanotech Energy battery.       306
  • Figure 83. Hybrid battery powered electrical motorbike concept.               309
  • Figure 84. NBD battery. 310
  • Figure 85. Schematic illustration of three-chamber system for SWCNH production.            311
  • Figure 86. TEM images of carbon nanobrush.      312
  • Figure 87. EnerCerachip.               316
  • Figure 88. Cambrian battery.       321
  • Figure 89. Printed battery.           325
  • Figure 90. Prieto Foam-Based 3D Battery.             326
  • Figure 91. Printed Energy flexible battery.             330
  • Figure 92. ProLogium solid-state battery.              332
  • Figure 93. QingTao solid-state batteries. 333
  • Figure 94. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.        336
  • Figure 95. SES Apollo batteries.  342
  • Figure 96. Sionic Energy battery cell.        347
  • Figure 97. Solid Power battery pouch cell.             349
  • Figure 98.TeraWatt Technology solid-state battery           355
  • Figure 99. Different types of ultracapacitors.        372
  • Figure 100. Supercapacitor schematic.    373
  • Figure 101. Schematic illustration of EDLC.            373
  • Figure 102. Schematic of supercapacitors in wearables.  382
  • Figure 103. (A) Schematic overview of a flexible supercapacitor as compared to conventional supercapacitor.        382
  • Figure 104. Stretchable graphene supercapacitor.             389
  • Figure 105. Applications of graphene in supercapacitors. 391
  • Figure 106. Graphene aerogel.   398
  • Figure 107. Structure diagram of Ti3C2Tx.              400
  • Figure 108. Main printing methods for supercapacitors.  403
  • Figure 109. Graphene battery schematic.              426
  • Figure 110. PtL production pathways.     446
  • Figure 111. Process steps in the production of electrofuels.          447
  • Figure 112. Mapping storage technologies according to performance characteristics.        448
  • Figure 113. Production process for green hydrogen.         451
  • Figure 114. E-liquids production routes. 452
  • Figure 115. Fischer-Tropsch liquid e-fuel products.            453
  • Figure 116. Resources required for liquid e-fuel production.         453
  • Figure 117. Schematic of Climeworks DAC system.            457
  • Figure 118. Levelized cost and fuel-switching CO2 prices of e-fuels.           463
  • Figure 119. Cost breakdown for e-fuels. 465
  • Figure 120. Thermal energy storage materials.    467
  • Figure 121. Phase Change Material transient behaviour. 468
  • Figure 122. PCM mode of operation.       470
  • Figure 123. Classification of PCMs.           472
  • Figure 124. Phase-change materials in their original states.           473
  • Figure 125. Global revenues for phase change materials, 2019-2032, by market, conservative estimate (millions USD).                483
  • Figure 126. Solid State Reflective Display (SRD®) schematic.          489
  • Figure 127. Transtherm® PCMs. 490
  • Figure 128. HI-FLOW Phase Change Materials.     503
  • Figure 129. Crēdo™ ProMed transport bags.        510
  • Figure 130. PEM fuel cell schematic.        535
  • Figure 131. PEMFC assembly and materials.         536
  • Figure 132. Toyota Mirai 2nd generation.              544
  • Figure 133. Hyundai NEXO.          544
  • Figure 134. Global market for fuel cells to 2033, by markets (revenues).  545
  • Figure 135. Solar PV module production by technology, 2011-2021.           574
  • Figure 136. Efficiency of different solar PV cell types.       575
  • Figure 137. Dye sensitized solar cell schemartic. 578
  • Figure 138. Metamaterial solar coating.  601
  • Figure 139. Thin film and flexible solar cell Deposition Methods. 602
  • Figure 140. Thin film and flexible solar cells players.         606
  • Figure 141. The Sun Rock building, Taiwan.           613
  • Figure 142. Photovoltaic solar cells.          614
  • Figure 143. Classification of BIPV products.           615
  • Figure 144. Global market for PV solar cells to 2033, by technology (revenues).   621
  • Figure 145. Hikari building incorporating SunEwat Square solar glazing.    623
  • Figure 146. Elegante solar glass panel.    624
  • Figure 147. Certainteed Apollo-2 solar shingles roof.        632
  • Figure 148. Triple insulated glass unit for the Stadtwerke Konstanz energy cube in Germany.        636
  • Figure 149. Moscow building incorporating Hevel's BIPV product.               651
  • Figure 150. Mitrex solar façade layers.    657
  • Figure 151. Solar Brick by Mitrex               658
  • Figure 152. QDSSC Module.         659
  • Figure 153. DragonScales technology.     662
  • Figure 154. Photovoltaic integration in façade at the Gioia 22 skyscraper, in Milan.             671
  • Figure 155. S6 flexible solar module.       688
  • Figure 156. Ubiquitous Energy windows installed at the Boulder Commons in Colorado.   692
  • Figure 157. Energy harvesting technologies.         697
  • Figure 158. Energy harvesting solutions in smart buildings.            698
  • Figure 159. TE module schematic.             701
  • Figure 160. Utilization of TE materials in exterior walls for energy generation, heating and cooling.             702
  • Figure 161. Conductive yarns.     705
  • Figure 162. SEM image of cotton fibers with PEDOT:PSS coating. 707
  • Figure 163. Textile-based car seat heaters.           710
  • Figure 164. Micro-scale energy scavenging techniques.  715
  • Figure 165. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper.               716
  • Figure 166 . 3D print piezoelectric material.          717

 

 

 

 

The Global Market for Advanced Materials & Technologies for Energy Production, Storage & Harvesting
The Global Market for Advanced Materials & Technologies for Energy Production, Storage & Harvesting
PDF download.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com