The Global Market for Bioplastics and Biopolymers to 2033

0

Published October 2022 | 443 pages, 76 tables, 115 figures | Download table of contents

There is fast growing demand for plant-based product solutions, including eco-friendly bioplastics. Global plastics production was over 367 million metric tons in 2020 and consumption is forecast to double by 2050. Apart from the environmental problems associated with extracting the non-renewable resource, nearly 80 million tonnes of plastics end up in landfills. Bioplastics and biopolymers are a biodegradable and sustainable alternative to fossil-based plastics. 

Polymeric biomaterials are biobased products that allow for greater product sustainability due to their biodegradability and renewability. Their use is attractive as bioplastics that biodegrade to CO2 and H2O mitigate the negative effects of standard plastic (litter and damage to aqua environments). Renewable feedstocks can be utilized instead of petroleum, thereby reducing global dependence on crude oil and lessening the impact on climate.

The sky rocketing price of petroleum coupled with government regulations and consumer global environmental concerns, and continued population growth is pushing the plastic industries towards sustainability. Growing government regulatory restrictions, consumers’ desire and energy conservation are some of the key factors that drive research and proudct development towards renewable resource-based polymeric biomaterials. The performance of bioplastics is also improving and range of applications expanding. LG Chem and Archer Daniels Midland Co. (ADM) have launched two joint ventures for U.S. production of lactic acid and polylactic acid to meet growing demand for a wide variety of plant-based products, including bioplastics.

Bioplastics are defined as 'biobased and/or biodegradable plastics', a globally accepted definition. Not all bioplastics are biobased and if referring to the plastic problem of non-biodegradability, not all bioplastics are biodegradable. Biobased is based upon the carbon source while biodegradability upon chemical structure.

These include:

  • Biobased plastics that are not necessarily biodegradable (including conventional polymers, e.g. PE, made from biobased monomers.
  • Plastics containing both petro-based and bio-based components, e.g. PET, not necessarily biodegradable.
  • Biodegradable or compostable plastics derived from biobased materials, such as starch, cellulose, polylactides or polyhydroxyalkaboates.
  • Biodegradable petroleum-based plastics, e.g. PBAT.

 

Bioplastics producers have scaled up production considerably, with further expansion over the next few years. This report covers:

  • Analysis of non-biodegradable bio-based plastics and biodegradable plastics and polymers.
  • Global production capacities, market demand, market drivers, trends and challenges. 
  • Analysis of biobased chemicals including:
    • Bio-based adipic acid
    • 11-Aminoundecanoic acid (11-AA)
    • 1,4-Butanediol (1,4-BDO)
    • Dodecanedioic acid (DDDA)
    • Epichlorohydrin (ECH)
    • Ethylene 
    • Furfural
    • 5-Chloromethylfurfural (5-CMF)
    • 5-Hydroxymethylfurfural (HMF) 
    • 2,5-Furandicarboxylic acid (2,5-FDCA)
    • Furandicarboxylic methyl ester (FDME)
    • Isosorbide 
    • Itaconic acid
    • 3-Hydroxypropionic acid (3-HP)
    • 5 Hydroxymethyl furfural (HMF)
    • Lactic acid (D-LA) 
    • Lactic acid – L-lactic acid (L-LA)
    • Lactide
    • Levoglucosenone
    • Levulinic acid
    • Monoethylene glycol (MEG)
    • Monopropylene glycol (MPG)
    • Muconic acid
    • Naphtha
    • Pentamethylene diisocyanate
    • 1,3-Propanediol (1,3-PDO)
    • Sebacic acid
    • Succinic acid (SA)
  • Analysis of synthetic biopolymers market including:
    • Polylactic acid (Bio-PLA)
    • Polyethylene terephthalate (Bio-PET)
    • Polytrimethylene terephthalate (Bio-PTT)
    • Polyethylene furanoate (Bio-PEF)
    • Polyamides (Bio-PA)
    • Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
    • Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including
    • Polyhydroxyalkanoates (PHA)
    • Polysaccharides
    • Microfibrillated cellulose (MFC)
    • Cellulose nanocrystals
    • Cellulose nanofibers,
    • Protein-based bioplastics
    • Algal and fungal based bioplastics and biopolymers. 
  • Market segmentation analysis. Markets analysed include packaging, consumer goods, automotive, building & construction, textiles, electronics, agriculture & horticulture. 
  • Market growth to 2033 in terms of consumption and producer capacities. 
  • Emerging technologies in synthetic and natural produced bioplastics and biopolymers. 
  • More than 300 companies profiled including products and production capacities. Companies profiled include major producers such as Arkema, Avantium, BASF, Borealis, Braskem, Cathay, Danimer Scientific, Indorama, Mitsubishi Chemicals, NatureWorks, Novamont, TotalEnergies Corbion and many more. Profiles include products and production capacities. 
  • Profiles of start-up producers and product developers including AMSilk GmbH, Notpla, Loliware, Bolt Threads, Ecovative, Kraig Biocraft Laboratories, Plantic, Spiber and many more. 

 

1              EXECUTIVE SUMMARY   25

  • 1.1          Market drivers and trends in bioplastics and biopolymers              26
  • 1.2          Global production to 2033            28
  • 1.3          Main producers and global production capacities               30
    • 1.3.1      Producers           30
    • 1.3.2      By biobased and sustainable plastic type               31
    • 1.3.3      By region             34
  • 1.4          Global demand for biobased and sustainable plastics 2020-21, by market               36
  • 1.5          Challenges for the bioplastics and biopolymers market   39

 

2              RESEARCH METHODOLOGY         41

 

3              THE GLOBAL PLASTICS MARKET 43

  • 3.1          Global production of plastics       43
  • 3.2          The importance of plastic              43
  • 3.3          Issues with plastics use  44
  • 3.4          Policy and regulations    44
  • 3.5          The circular economy     45
  • 3.6          Conventional polymer materials used in packaging            47
    • 3.6.1      Polyolefins: Polypropylene and polyethylene      48
    • 3.6.2      PET and other polyester polymers            50
    • 3.6.3      Renewable and bio-based polymers for packaging             50
  • 3.7          Comparison of synthetic fossil-based and bio-based polymers     52
  • 3.8          End-of-life treatment of bioplastics          52

 

4              BIO-BASED CHEMICALS AND FEEDSTOCKS             54

  • 4.1          Types    54
  • 4.2          Production capacities     55
  • 4.3          Bio-based adipic acid      56
    • 4.3.1      Applications and production       56
  • 4.4          11-Aminoundecanoic acid (11-AA)            56
  • 4.4.1      Applications and production       57
  • 4.5          1,4-Butanediol (1,4-BDO)              57
    • 4.5.1      Applications and production       58
  • 4.6          Dodecanedioic acid (DDDA)         59
    • 4.6.1      Applications and production       59
  • 4.7          Epichlorohydrin (ECH)    60
    • 4.7.1      Applications and production       60
  • 4.8          Ethylene              61
    • 4.8.1      Applications and production       61
  • 4.9          Furfural 62
    • 4.9.1      Applications and production       62
  • 4.10        5-Hydroxymethylfurfural (HMF) 63
    • 4.10.1    Applications and production       63
  • 4.11        5-Chloromethylfurfural (5-CMF) 63
    • 4.11.1    Applications and production       63
  • 4.12        2,5-Furandicarboxylic acid (2,5-FDCA)     64
    • 4.12.1    Applications and production       64
  • 4.13        Furandicarboxylic methyl ester (FDME)  64
  • 4.14        Isosorbide           65
    • 4.14.1    Applications and production       65
  • 4.15        Itaconic acid       65
    • 4.15.1    Applications and production       65
  • 4.16        3-Hydroxypropionic acid (3-HP) 66
    • 4.16.1    Applications and production       66
  • 4.17        5 Hydroxymethyl furfural (HMF) 67
    • 4.17.1    Applications and production       67
  • 4.18        Lactic acid (D-LA)             67
    • 4.18.1    Applications and production       68
  • 4.19        Lactic acid – L-lactic acid (L-LA)   68
    • 4.19.1    Applications and production       68
  • 4.20        Lactide  69
    • 4.20.1    Applications and production       69
  • 4.21        Levoglucosenone             70
    • 4.21.1    Applications and production       71
  • 4.22        Levulinic acid      71
    • 4.22.1    Applications and production       71
  • 4.23        Monoethylene glycol (MEG)       71
    • 4.23.1    Applications and production       72
  • 4.24        Monopropylene glycol (MPG)    73
    • 4.24.1    Applications and production       73
  • 4.25        Muconic acid      74
    • 4.25.1    Applications and production       74
  • 4.26        Bio-Naphtha      74
    • 4.26.1    Applications and production       74
    • 4.26.2    Production capacities     75
  • 4.27        Pentamethylene diisocyanate    75
    • 4.27.1    Applications and production       75
  • 4.28        1,3-Propanediol (1,3-PDO)           76
  • 4.28.1    Applications and production       76
  • 4.29        Sebacic acid        77
    • 4.29.1    Applications and production       78
  • 4.30        Succinic acid (SA)             78
    • 4.30.1    Applications and production       79

 

5              BIOPLASTICS AND BIOPOLYMERS              80

  • 5.1          Bio-based or renewable plastics 80
    • 5.1.1      Drop-in bio-based plastics            80
    • 5.1.2      Novel bio-based plastics                81
  • 5.2          Biodegradable and compostable plastics                82
    • 5.2.1      Biodegradability               82
    • 5.2.2      Compostability  83
  • 5.3          Advantages and disadvantages  84
  • 5.4          Types of Bio-based and/or Biodegradable Plastics              84
  • 5.5          Market leaders by biobased and/or biodegradable plastic types  86
  • 5.6          Regional/country production capacities, by main types   87
    • 5.6.1      Bio-based Polyethylene (Bio-PE) production capacities, by country             89
    • 5.6.2      Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country              90
    • 5.6.3      Bio-based polyamides (Bio-PA) production capacities, by country               91
    • 5.6.4      Bio-based Polypropylene (Bio-PP) production capacities, by country          92
    • 5.6.5      Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country     93
    • 5.6.6      Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country         94
    • 5.6.7      Bio-based Polybutylene succinate (PBS) production capacities, by country              95
    • 5.6.8      Bio-based Polylactic acid (PLA) production capacities, by country 96
    • 5.6.9      Polyhydroxyalkanoates (PHA) production capacities, by country  97
    • 5.6.10    Starch blends production capacities, by country 98
  • 5.7          SYNTHETIC BIO-BASED POLYMERS            99
    • 5.7.1      Polylactic acid (Bio-PLA) 99
      • 5.7.1.1   Market analysis 99
      • 5.7.1.2   Production          101
      • 5.7.1.3   Producers and production capacities, current and planned            101
        • 5.7.1.3.1               Lactic acid producers and production capacities  101
        • 5.7.1.3.2               PLA producers and production capacities               101
        • 5.7.1.3.3               Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)     103
    • 5.7.2      Polyethylene terephthalate (Bio-PET)     104
      • 5.7.2.1   Market analysis 104
      • 5.7.2.2   Producers and production capacities       105
      • 5.7.2.3   Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)          106
    • 5.7.3      Polytrimethylene terephthalate (Bio-PTT)             106
      • 5.7.3.1   Market analysis 106
      • 5.7.3.2   Producers and production capacities       107
      • 5.7.3.3   Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)          108
    • 5.7.4      Polyethylene furanoate (Bio-PEF)             108
      • 5.7.4.1   Market analysis 109
      • 5.7.4.2   Comparative properties to PET   110
      • 5.7.4.3   Producers and production capacities       110
        • 5.7.4.3.1               FDCA and PEF producers and production capacities           110
        • 5.7.4.3.2               Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons). 112
    • 5.7.5      Polyamides (Bio-PA)       112
      • 5.7.5.1   Market analysis 113
      • 5.7.5.2   Producers and production capacities       114
      • 5.7.5.3   Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)            114
    • 5.7.6      Poly(butylene adipate-co-terephthalate) (Bio-PBAT)        115
      • 5.7.6.1   Market analysis 115
      • 5.7.6.2   Producers and production capacities       115
      • 5.7.6.3   Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)             116
    • 5.7.7      Polybutylene succinate (PBS) and copolymers     117
      • 5.7.7.1   Market analysis 117
      • 5.7.7.2   Producers and production capacities       118
      • 5.7.7.3   Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)           118
    • 5.7.8      Polyethylene (Bio-PE)    119
      • 5.7.8.1   Market analysis 119
      • 5.7.8.2   Producers and production capacities       120
      • 5.7.8.3   Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).        120
    • 5.7.9      Polypropylene (Bio-PP) 121
      • 5.7.9.1   Market analysis 121
      • 5.7.9.2   Producers and production capacities       121
      • 5.7.9.3   Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)      122
  • 5.8          NATURAL BIO-BASED POLYMERS               123
    • 5.8.1      Polyhydroxyalkanoates (PHA)     123
      • 5.8.1.1   Technology description 123
      • 5.8.1.2   Types    125
        • 5.8.1.2.1               PHB        127
        • 5.8.1.2.2               PHBV     127
      • 5.8.1.3   Synthesis and production processes        129
      • 5.8.1.4   Market analysis 132
      • 5.8.1.5   Commercially available PHAs      133
      • 5.8.1.6   Markets for PHAs             134
        • 5.8.1.6.1               Packaging            135
        • 5.8.1.6.2               Cosmetics           137
          • 5.8.1.6.2.1           PHA microspheres           137
          • 5.8.1.6.3               Medical 137
            • 5.8.1.6.3.1           Tissue engineering          137
            • 5.8.1.6.3.2           Drug delivery     138
          • 5.8.1.6.4               Agriculture          138
            • 5.8.1.6.4.1           Mulch film           138
            • 5.8.1.6.4.2           Grow bags           138
      • 5.8.1.7   Producers and production capacities       139
      • 5.8.1.8   PHA production capacities 2019-2033 (1,000 tons)            140
    • 5.8.2      Polysaccharides 141
      • 5.8.2.1   Microfibrillated cellulose (MFC) 141
        • 5.8.2.1.1               Market analysis 141
        • 5.8.2.1.2               Producers and production capacities       142
        • 5.8.2.2   Nanocellulose   142
          • 5.8.2.2.1               Cellulose nanocrystals    142
            • 5.8.2.2.1.1           Synthesis             143
            • 5.8.2.2.1.2           Properties           145
            • 5.8.2.2.1.3           Production          146
            • 5.8.2.2.1.4           Applications       146
            • 5.8.2.2.1.5           Market analysis 147
            • 5.8.2.2.1.6           Producers and production capacities       149
          • 5.8.2.2.2               Cellulose nanofibers       149
            • 5.8.2.2.2.1           Applications       150
            • 5.8.2.2.2.2           Market analysis 151
            • 5.8.2.2.2.3           Producers and production capacities       152
          • 5.8.2.2.3               Bacterial Nanocellulose (BNC)    153
          • 5.8.2.2.3.1           Production          153
          • 5.8.2.2.3.2           Applications       156
    • 5.8.3      Protein-based bioplastics             157
      • 5.8.3.1   Types, applications and producers            158
    • 5.8.4      Algal and fungal 159
      • 5.8.4.1   Algal      159
        • 5.8.4.1.1               Advantages        159
        • 5.8.4.1.2               Production          161
        • 5.8.4.1.3               Producers           161
      • 5.8.4.2   Mycelium            162
        • 5.8.4.2.1               Properties           162
        • 5.8.4.2.2               Applications       163
        • 5.8.4.2.3               Commercialization           164
    • 5.8.5      Chitosan              165
      • 5.8.5.1   Technology description 165
  • 5.9          PRODUCTION OF BIOBASED AND SUSTAINABLE PLASTICS, BY REGION      166
    • 5.9.1      North America   167
    • 5.9.2      Europe 167
    • 5.9.3      Asia-Pacific         168
      • 5.9.3.1   China     168
      • 5.9.3.2   Japan    168
      • 5.9.3.3   Thailand               169
      • 5.9.3.4   Indonesia            169
    • 5.9.4      Latin America    170
  • 5.10        MARKET SEGMENTATION OF BIOPLASTICS           171
    • 5.10.1    Packaging            172
      • 5.10.1.1                Processes for bioplastics in packaging      172
      • 5.10.1.2                Applications       173
      • 5.10.1.3                Flexible packaging            173
        • 5.10.1.3.1             Production volumes 2019-2033   176
      • 5.10.1.4                Rigid packaging 177
        • 5.10.1.4.1             Production volumes 2019-2033   178
    • 5.10.2    Consumer products        180
      • 5.10.2.1                Applications       180
    • 5.10.3    Automotive        181
      • 5.10.3.1                Applications       181
      • 5.10.3.2                Production capacities     181
    • 5.10.4    Building & construction 182
      • 5.10.4.1                Applications       182
      • 5.10.4.2                Production capacities     182
    • 5.10.5    Textiles 183
      • 5.10.5.1                Apparel 183
      • 5.10.5.2                Footwear            184
      • 5.10.5.3                Medical textiles 186
      • 5.10.5.4                Production capacities     186
    • 5.10.6    Electronics          187
      • 5.10.6.1                Applications       187
      • 5.10.6.2                Production capacities     187
    • 5.10.7    Agriculture and horticulture        188
      • 5.10.7.1                Production capacities     189

 

6              COMPANY PROFILES       190 (326 company profiles)

 

7              REFERENCES       436

 

List of Tables

  • Table 1. Market trends and drivers in bioplastics and biopolymers.            26
  • Table 2. Global production capacities of biobased and sustainable plastics 2018-2033, in 1,000 tons.          28
  • Table 3. Global production capacities, by producers.        30
  • Table 4. Global production capacities of biobased and sustainable plastics 2019-2033, by type, in 1,000 tons.        31
  • Table 5. Issues related to the use of plastics.        44
  • Table 6. Types of bio-based plastics and fossil-fuel-based plastics               47
  • Table 7. Comparison of synthetic fossil-based and bio-based polymers.   52
  • Table 8. List of Bio-based chemicals.        54
  • Table 9. Lactide applications.      69
  • Table 10. Biobased MEG producers capacities.    72
  • Table 11. Type of biodegradation.            83
  • Table 12. Advantages and disadvantages of biobased plastics compared to conventional plastics. 84
  • Table 13. Types of Bio-based and/or Biodegradable Plastics, applications.               84
  • Table 14. Market leader by Bio-based and/or Biodegradable Plastic types.             86
  • Table 15. Bioplastics regional production capacities, 1,000 tons, 2019-2033.           87
  • Table 16. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.               99
  • Table 17. Lactic acid producers and production capacities.             101
  • Table 18. PLA producers and production capacities.          101
  • Table 19. Planned PLA capacity expansions in China.         102
  • Table 20. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.              104
  • Table 21. Bio-based Polyethylene terephthalate (PET) producers and production capacities,           105
  • Table 22. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.       106
  • Table 23. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.   107
  • Table 24. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.                109
  • Table 25. PEF vs. PET.     110
  • Table 26. FDCA and PEF producers.          111
  • Table 27. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.                113
  • Table 28. Leading Bio-PA producers production capacities.            114
  • Table 29. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.              115
  • Table 30. Leading PBAT producers, production capacities and brands.      115
  • Table 31. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.       117
  • Table 32. Leading PBS producers and production capacities.          118
  • Table 33. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.                119
  • Table 34. Leading Bio-PE producers.        120
  • Table 35. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.        121
  • Table 36. Leading Bio-PP producers and capacities.           121
  • Table 37.Types of PHAs and properties. 126
  • Table 38. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 128
  • Table 39. Polyhydroxyalkanoate (PHA) extraction methods.          130
  • Table 40. Polyhydroxyalkanoates (PHA) market analysis. 132
  • Table 41. Commercially available PHAs.  133
  • Table 42. Markets and applications for PHAs.       134
  • Table 43. Applications, advantages and disadvantages of PHAs in packaging.         136
  • Table 44. Polyhydroxyalkanoates (PHA) producers.           139
  • Table 45. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.                141
  • Table 46. Leading MFC producers and capacities.               142
  • Table 47. Synthesis methods for cellulose nanocrystals (CNC).     143
  • Table 48. CNC sources, size and yield.      144
  • Table 49. CNC properties.             145
  • Table 50. Mechanical properties of CNC and other reinforcement materials.         145
  • Table 51. Applications of nanocrystalline cellulose (NCC).               147
  • Table 52. Cellulose nanocrystals analysis.               147
  • Table 53: Cellulose nanocrystal production capacities and production process, by producer.          149
  • Table 54. Applications of cellulose nanofibers (CNF).        150
  • Table 55. Cellulose nanofibers market analysis.   151
  • Table 56. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.    152
  • Table 57. Applications of bacterial nanocellulose (BNC). 156
  • Table 58. Types of protein based-bioplastics, applications and companies.             158
  • Table 59. Types of algal and fungal based-bioplastics, applications and companies.             159
  • Table 60. Overview of alginate-description, properties, application and market size.          160
  • Table 61. Companies developing algal-based bioplastics. 161
  • Table 62. Overview of mycelium fibers-description, properties, drawbacks and applications.          162
  • Table 63. Companies developing mycelium-based bioplastics.      164
  • Table 64. Overview of chitosan-description, properties, drawbacks and applications.         165
  • Table 65. Global production capacities of biobased and sustainable plastics in 2019-2033, by region, tons.              166
  • Table 66. Biobased and sustainable plastics producers in North America. 167
  • Table 67. Biobased and sustainable plastics producers in Europe.               168
  • Table 68. Biobased and sustainable plastics producers in Asia-Pacific.       169
  • Table 69. Biobased and sustainable plastics producers in Latin America.  170
  • Table 70. Processes for bioplastics in packaging. 172
  • Table 71. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.                174
  • Table 72. Typical applications for bioplastics in flexible packaging.              174
  • Table 73. Typical applications for bioplastics in rigid packaging.   177
  • Table 74. Granbio Nanocellulose Processes.         290
  • Table 75. Lactips plastic pellets. 319
  • Table 76. Oji Holdings CNF products.       366

 

List of Figures

  • Figure 1. Total global production capacities for biobased and sustainable plastics, all types, 000 tons.        26
  • Figure 2. Global production capacities of bioplastics 2018-2033, in 1,000 tons by biodegradable/non-biodegradable types.   29
  • Figure 3. Global production capacities of biobased and sustainable plastics in 2019-2033, by type, in 1,000 tons.  33
  • Figure 4. Global production capacities of bioplastics in 2019-2033, by type.           34
  • Figure 5. Global production capacities of biobased and sustainable plastics 2019-2033, by region, tonnes.               35
  • Figure 6. Current and future applications of biobased and sustainable plastics.     36
  • Figure 7. Global demand for biobased and sustainable plastics by end user market, 2021  37
  • Figure 8. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, tons. 39
  • Figure 9. Challenges for the bioplastics and biopolymers market. 39
  • Figure 10. Global plastics production 1950-2020, millions of tons.              43
  • Figure 11. The circular plastic economy. 46
  • Figure 12. Routes for synthesizing polymers from fossil-based and bio-based resources.  51
  • Figure 13. Bio-based chemicals and feedstocks production capacities, 2018-2033.                55
  • Figure 14. Overview of Toray process. Overview of process           56
  • Figure 15. Production capacities for 11-Aminoundecanoic acid (11-AA).   57
  • Figure 16. 1,4-Butanediol (BDO) production capacities, 2018-2033 (tonnes).         58
  • Figure 17. Dodecanedioic acid (DDDA) production capacities, 2018-2033 (tonnes).             59
  • Figure 18. Epichlorohydrin production capacities, 2018-2033 (tonnes).    61
  • Figure 19. Ethylene production capacities, 2018-2033 (tonnes).  62
  • Figure 20. Potential industrial uses of 3-hydroxypropanoic acid.  67
  • Figure 21. L-lactic acid (L-LA) production capacities, 2018-2033 (tonnes). 68
  • Figure 22. Lactide production capacities, 2018-2033 (tonnes).     70
  • Figure 23. Bio-MEG production capacities, 2018-2033.      72
  • Figure 24. Bio-MPG production capacities, 2018-2033 (tonnes).  73
  • Figure 25. BIobased naphtha production capacities, 2018-2033 (tonnes). 75
  • Figure 26. 1,3-Propanediol (1,3-PDO) production capacities, 2018-2033 (tonnes). 77
  • Figure 27. Sebacic acid production capacities, 2018-2033 (tonnes).           78
  • Figure 28.  Coca-Cola PlantBottle®.           81
  • Figure 29. Interrelationship between conventional, bio-based and biodegradable plastics.              82
  • Figure 30. Bioplastics regional production capacities, 1,000 tons, 2019-2033.         89
  • Figure 31. Bio-based Polyethylene (Bio-PE), 1,000 tons, 2019-2033.            89
  • Figure 32. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, 1,000 tons, 2019-2033   90
  • Figure 33. Bio-based polyamides (Bio-PA) production capacities, 1,000 tons, 2019-2033.   91
  • Figure 34. Bio-based Polypropylene (Bio-PP) production capacities, 1,000 tons, 2019-2033.             92
  • Figure 35. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, 1,000 tons, 2019-2033.         93
  • Figure 36. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, 1,000 tons, 2019-2033.                94
  • Figure 37. Bio-based Polybutylene succinate (PBS) production capacities, 1,000 tons, 2019-2033.  95
  • Figure 38. Bio-based Polylactic acid (PLA) production capacities, 1,000 tons, 2019-2033.    96
  • Figure 39. PHA production capacities, 1,000 tons, 2019-2033.        97
  • Figure 40. Starch blends production capacities, 1,000 tons, 2019-2033.     98
  • Figure 41. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons).              103
  • Figure 42. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)     106
  • Figure 43. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons).   108
  • Figure 44. Production capacities of Polyethylene furanoate (PEF) to 2025.               111
  • Figure 45. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons).            112
  • Figure 46. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons).      114
  • Figure 47. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons).       116
  • Figure 48. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons).    119
  • Figure 49. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons).   120
  • Figure 50. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons). 122
  • Figure 51. PHA family.    126
  • Figure 52. PHA production capacities 2019-2033 (1,000 tons).     140
  • Figure 53. TEM image of cellulose nanocrystals. 143
  • Figure 54. CNC preparation.        143
  • Figure 55. Extracting CNC from trees.      144
  • Figure 56. CNC slurry.     146
  • Figure 57. CNF gel.           149
  • Figure 58. Bacterial nanocellulose shapes              155
  • Figure 59. BLOOM masterbatch from Algix.           160
  • Figure 60. Typical structure of mycelium-based foam.     163
  • Figure 61. Commercial mycelium composite construction materials.          164
  • Figure 62. Global production capacities of biobased and sustainable plastics 2020.              166
  • Figure 63. Global production capacities of biobased and sustainable plastics 2025.              167
  • Figure 64. Global production capacities for biobased and sustainable plastics by end user market 2019-2033, 1,000 tons.      171
  • Figure 65. PHA bioplastics products.        173
  • Figure 66. Bioplastics for flexible packaging by bioplastic material type, 2019–2033 (‘000 tonnes).              176
  • Figure 67. Bioplastics for rigid packaging by bioplastic material type, 2019–2033 (‘000 tonnes).    178
  • Figure 68. Global bioplastic packaging by geographic market, 2023–2033 (‘000 tonnes).  179
  • Figure 69. Global production capacities for biobased and sustainable plastics in consumer products 2019-2033, in 1,000 tons.         180
  • Figure 70. Global production capacities for biobased and sustainable plastics in automotive 2019-2033, in 1,000 tons.                181
  • Figure 71. Global production capacities for biobased and sustainable plastics in building and construction 2019-2033, in 1,000 tons.     182
  • Figure 72. AlgiKicks sneaker, made with the Algiknit biopolymer gel.         184
  • Figure 73. Reebok's [REE]GROW running shoes. 184
  • Figure 74. Camper Runner K21.  185
  • Figure 75. Global production capacities for biobased and sustainable plastics in textiles 2019-2033, in 1,000 tons.                186
  • Figure 76. Global production capacities for biobased and sustainable plastics in electronics 2019-2033, in 1,000 tons.                187
  • Figure 77. Biodegradable mulch films.     188
  • Figure 78. Global production capacities for biobased and sustainable plastics in agriculture 2019-2033, in 1,000 tons.                189
  • Figure 79. Algiknit yarn. 194
  • Figure 80. Bio-PA rear bumper stay.         211
  • Figure 81. BIOLO e-commerce mailer bag made from PHA.            219
  • Figure 82. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 220
  • Figure 83. formicobio™ technology.         245
  • Figure 84. nanoforest-S. 247
  • Figure 85. nanoforest-PDP.         247
  • Figure 86. nanoforest-MB.           248
  • Figure 87. CuanSave film.             255
  • Figure 88. ELLEX products.           257
  • Figure 89. CNF-reinforced PP compounds.            258
  • Figure 90. Kirekira! toilet wipes. 258
  • Figure 91. Mushroom leather.    270
  • Figure 92. Cellulose Nanofiber (CNF) composite with polyethylene (PE).  283
  • Figure 93. PHA production process.         284
  • Figure 94. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.                292
  • Figure 95. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 295
  • Figure 96. CNF gel.           300
  • Figure 97. Block nanocellulose material. 301
  • Figure 98. CNF products developed by Hokuetsu.              301
  • Figure 99. Made of Air's HexChar panels.               328
  • Figure 100. TransLeather.             329
  • Figure 101. IPA synthesis method.            337
  • Figure 102. MOGU-Wave panels.              339
  • Figure 103. Reishi.           344
  • Figure 104. Nippon Paper Industries’ adult diapers.          356
  • Figure 105. Compostable water pod.       358
  • Figure 106. CNF clear sheets.      366
  • Figure 107. Oji Holdings CNF polycarbonate product.       368
  • Figure 108. Manufacturing process for STARCEL. 390
  • Figure 109. Lyocell process.         399
  • Figure 110. Spider silk production.            404
  • Figure 111. Sulapac cosmetics containers.             406
  • Figure 112.  Sulzer equipment for PLA polymerization processing.              407
  • Figure 113. Teijin bioplastic film for door handles.             414
  • Figure 114. Corbion FDCA production process.    421
  • Figure 115. Visolis’ Hybrid Bio-Thermocatalytic Process. 428

 

 

 

The Global Market for Bioplastics and Biopolymers to 2033
The Global Market for Bioplastics and Biopolymers to 2033
PDF download.

The Global Market for Bioplastics and Biopolymers to 2033
The Global Market for Bioplastics and Biopolymers to 2033
PDF download and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com