The Global Market for Carbon Capture, Utilization and Storage Technologies

0

May 2022 | 400 pages, 59 figures, 50 tables | Download Table of contents

Carbon capture, utilization, and storage (CCUS) refers to technologies that capture CO2 emissions and use or store them, leading to permanent sequestration.

CCUS technologies capture of carbon dioxide emissions from large power sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. CO2 can also be captured directly from the atmosphere. If not utilized onsite, captured CO2  is compressed and transported by pipeline, ship, rail or truck to be used in a range of applications, or injected into deep geological formations (including depleted oil and gas reservoirs or saline formations) which trap the CO2 for permanent storage.

Carbon removal technologies include direct air capture (DAC) or bioenergy with carbon capture and storage (BECCS). This fast growing market is being driven by government climate initiatives and increased public and private investments. In 2022 there has been over $1 billion in private investment in CCUS companies.

The market for CO2 use is expected to remain relatively small in the near term (<$2.5 billion), but will grow  in the next few years in the drive to mitigate carbon emissions from industry. New pathways to use CO2 in the production of fuels, chemicals and building materials are driving global interest, allied to increasing backing from governments, industry and investors. Climeworks, a Swiss startup developing direct air capture (DAC) raised a $650m round in April 2022.

Report contents include:

  • Analysis of the global market for carbon capture, utilization, and storage (CCUS) technologies.
  • Market developments, funding and investment in carbon capture, utilization, and storage (CCUS) 2020-2022.
  • Analysis of key market dynamics, trends, opportunities and factors influencing the global carbon, capture utilization & storage technologies market and its subsegments.
  • Market barriers to carbon capture, utilization, and storage (CCUS) technologies.
  • Market analysis of CO2-derived products including fuels, chemicals, building materials from minerals, building materials from waste, enhanced oil recovery, and CO2 use to enhance the yields of biological processes.
  • Market values and forecasts to 2040.
  • Profiles of 130 companies in Carbon capture, utilization, and storage (CCUS). Companies profiled include Algiecel, Captura, Carbyon BV, Climeworks, Dimensional Energy, Ebb Carbon, Heirloom Carbon Technologies, High Hopes Labs, Living Carbon, Mission Zero Technologies, Prometheus Fuels, Sustaera and Svante.

 

 

1              RESEARCH METHODOLOGY         15

  • 1.1          Definition of Carbon Capture, Utilisation and Storage (CCUS)        16

 

2              EXECUTIVE SUMMARY   18

  • 2.1          Main sources of carbon dioxide emissions             19
  • 2.2          CO2 as a commodity       20
  • 2.3          Meeting climate targets 22
  • 2.4          Market drivers and trends            23
  • 2.5          The current market and future outlook  26
  • 2.6          CCUS Industry developments 2020-2022                28
  • 2.7          CCUS investments           31
  • 2.8          Government CCUS initiatives      34
  • 2.9          Commercial CCUS facilities and projects 36
    • 2.9.1      Facilities               36
    • 2.9.2      Projects               38
    • 2.9.3      Networks            39
  • 2.10        CCUS Value Chain             43
  • 2.11        Key market barriers for CCUS      45

 

3              INTRODUCTION 47

  • 3.1          What is CCUS?  47
    • 3.1.1      Carbon Capture 50
    • 3.1.2      Carbon Utilization            51
      • 3.1.2.1   CO2 utilization pathways              52
    • 3.1.3      Carbon storage 53
  • 3.2          Transporting CO2             55
    • 3.2.1      Methods of CO2 transport           56
    • 3.2.2      Safety   56
    • 3.2.3      Cost of CO2 capture for key sectors          57
    • 3.2.4      Cost of CO2 transport     58
  • 3.3          Applications       59
    • 3.3.1      Oil and gas          61
      • 3.3.1.1   Key CCUS technologies  61
    • 3.3.2      Power generation            62
      • 3.3.2.1   Key CCUS technologies  62
      • 3.3.2.2   Carbonate fuel cell capture          64
      • 3.3.2.3   Retrofitting coal and gas-fired power plants         65
    • 3.3.3      Iron and steel production             66
      • 3.3.3.1   Key CCUS technologies  66
    • 3.3.4      Blue hydrogen production           68
      • 3.3.4.1   Key CCUS technologies  68
    • 3.3.5      Cement and concrete     71
      • 3.3.5.1   Key CCUS technologies  71
    • 3.3.6      Chemicals production    73
      • 3.3.6.1   Key CCUS technologies  74
    • 3.3.7      Marine vessels  75
      • 3.3.7.1   Capturing CO2 emissions from marine vessels     75
  • 3.4          Costs     76
  • 3.5          Carbon pricing   79

 

4              CARBON CAPTURE           81

  • 4.1          CO2 capture from point sources 82
    • 4.1.1      Costs     84
    • 4.1.2      Transportation  86
    • 4.1.3      Global point source CO2 capture capacities          88
  • 4.2          Main carbon capture processes 89
    • 4.2.1      Post-combustion             89
    • 4.2.2      Oxy-combustion              91
    • 4.2.3      Liquid or supercritical CO2: Allam- Fetvedt Cycle 92
    • 4.2.4      Pre-combustion 93
  • 4.3          Carbon separation technologies 95
    • 4.3.1      Adsorption and absorption capture          95
    • 4.3.2      Membranes       97
    • 4.3.3      Liquid or supercritical CO2 (Cryogenic) capture   98
    • 4.3.4      Other technologies         100
    • 4.3.5      Comparison of key separation technologies         100
  • 4.4          Costs of CO2 capture      102
  • 4.5          Co2 capture capacity in 2021       103
  • 4.6          Carbon capture capacity forecast by capture type              104
  • 4.7          Carbon capture capacity forecast by end use       105
  • 4.8          Bioenergy with carbon capture and storage (BECCS)         106
    • 4.8.1      Overview of technology 106
    • 4.8.2      Advantages and disadvantages of BECCS 107
    • 4.8.3      BECCS facilities  108
    • 4.8.4      Challenges          109
  • 4.9          Direct air capture (DAC) 110
    • 4.9.1      Point source carbon capture versus Direct Air Capture     112
    • 4.9.2      Technologies     113
      • 4.9.2.1   High temperature (HT) aqueous solution               115
      • 4.9.2.2   Low temperature solid sorbent DAC        115
      • 4.9.2.3   Comparison of High temperature vs. low temperature DAC           116
    • 4.9.3      Commercialization           118
    • 4.9.4      Solid sorbents   120
    • 4.9.5      Liquid solvents  121
    • 4.9.6      Metal-organic frameworks (MOFs) in DAC             123
    • 4.9.7      DAC plants and projects-current and planned      125
    • 4.9.8      CO2 storage capacity by 2050      129
    • 4.9.9      CO2 capture forecasts for 2030, 2050, and 2070 130
    • 4.9.10    Markets for DAC               131
    • 4.9.11    Costs     132
    • 4.9.12    Challenges          134
    • 4.9.13    Players and production  135
  • 4.10        Other 'Negative emissions' technologies (NETs)  138
    • 4.10.1    Enhanced weathering and ocean alkalinisation    138
    • 4.10.2    Biochar 139
    • 4.10.3    Afforestation and reforestation 141
    • 4.10.4    Soil carbon sequestration             143
    • 4.10.5    Ocean fertilisation           144

 

5              CARBON UTILIZATION    145

  • 5.1          Overview            145
    • 5.1.1      Current market status    145
      • 5.1.1.1   Scalability            147
      • 5.1.1.2   Competition       149
      • 5.1.1.3   CO₂ utilization market forecast  152
    • 5.1.2      Benefits of carbon utilization       154
    • 5.1.3      Challenges          155
  • 5.2          Co2 utilization pathways               156
  • 5.3          Conversion processes    158
    • 5.3.1      Electrochemical conversion of CO2           158
    • 5.3.2      Photocatalytic and photothermal catalytic conversion of CO2       160
    • 5.3.3      Catalytic conversion of CO2         161
    • 5.3.4      Bioconversion of CO2     161
    • 5.3.5      Copolymerization of CO2              162
    • 5.3.6      Mineral carbonation       164
    • 5.3.7      LCA        165
  • 5.4          CO2-derived products    166
    • 5.4.1.1   Fuels     169
    • 5.4.1.2   Chemicals            187
    • 5.4.1.3   Building materials            202
    • 5.4.1.4   CO2 Utilization in Biological Yield-Boosting           216
  • 5.5          CO₂ Utilization in Enhanced Oil Recovery               229
    • 5.5.1      Overview            229
      • 5.5.1.1   CO₂ sources        229
      • 5.5.1.2   Enhanced oil recovery (EOR) principles   231
    • 5.5.2      CO₂-EOR facilities and projects   233
    • 5.5.3      CO₂-EOR market analysis and forecast    235
    • 5.5.4      Challenges          238
    • 5.5.5      Key players         239
  • 5.6          Carbon mineralization    241
    • 5.6.1      Advantages        243
    • 5.6.2      Challenges          244
    • 5.6.3      In situ mineralization      245
  • 5.7          Key players         247

 

6              CARBON STORAGE          249

  • 6.1          Storage technology and mechanisms      250
    • 6.1.1      Structural            250
    • 6.1.2      Residual               251
    • 6.1.3      Dissolution          252
    • 6.1.4      Mineral Trapping              253
  • 6.2          CO2 storage sites             254
    • 6.2.1      Storage types for geologic CO2 storage  254
    • 6.2.2      Oil and gas fields              255
    • 6.2.3      Saline formations             256
  • 6.3          Global CO2 storage potential      257
  • 6.4          Storage costs     258
  • 6.5          Costs     259
  • 6.6          Challenges          260

 

7              COMPANY PROFILES       261 (128 company profiles)

 

8              REFERENCES       390

 

List of Tables

  • Table 1. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends.           23
  • Table 2. Carbon capture, usage, and storage (CCUS) industry developments 2020-2022.   28
  • Table 3. CCUS funding and investments. 32
  • Table 4. Government CCUS initiatives.    34
  • Table 5. Global commercial CCUS facilities-in operation. 36
  • Table 6. Global commercial CCUS facilities-under development. 36
  • Table 7. CCUS projects. 38
  • Table 8. CCUS networks.               39
  • Table 9. Key market barriers for CCUS.    45
  • Table 10. CO2 utilization and removal pathways 49
  • Table 11. CO2 capture technologies.       50
  • Table 12. Key CCUS technologies in oil and gas production.           61
  • Table 13. Key CCUS technologies in power generation.    62
  • Table 14. Key CCUS technologies in iron and steel production.     66
  • Table 15. Key CCUS technologies in blue hydrogen production.    68
  • Table 16. Key CCUS technologies in cement and concrete.             71
  • Table 17. Key CCUS technologies in chemicals production.             74
  • Table 18. Costs for CO2 capture, transport and storage,  76
  • Table 19. Global carbon pricing. 79
  • Table 20. Main capture processes and their separation technologies         93
  • Table 21. Comparison of key separation technologies.     100
  • Table 22. Summary of CO2 capture costs for new power plants based on current technology         102
  • Table 23. Summary of CO2 capture costs for new hydrogen plants based on current technology. 102
  • Table 24. Technology overview. 106
  • Table 25. Advantages and disadvantages of BECCS            107
  • Table 26. BECCS facilities.             108
  • Table 27. Advantages and disadvantages of DAC.               111
  • Table 28. Costs for solid sorbent DAC      120
  • Table 29. Costs for liquid solvent DAC.    121
  • Table 30. DAC technology developers and production.    125
  • Table 31. Markets for DAC.          131
  • Table 32. Cost estimates of DAC.               132
  • Table 33. Challenges for DAC technology.              134
  • Table 34. DAC companies and technologies.         135
  • Table 35. CO2 capture cost ranges for industrial production.         150
  • Table 36. Bio electrochemical generation of solvents and biofuels from CO2.         158
  • Table 37. Electrochemical CO₂ reduction products.            159
  • Table 38. Overview of mature CO2-derived products and services.             167
  • Table 39. Market drivers for CO2-derived fuels.  171
  • Table 40. Market drivers for CO2-derived chemicals.        188
  • Table 41. Market drivers for CO2-derived products in building materials. 202
  • Table 42. CO2-derived building materials applications.     204
  • Table 43. Market players in CO2 derived building materials.          213
  • Table 44. Market players in CO2 Utilization in Biological Yield-Boosting.   226
  • Table 45. CO₂-EOR facilities.         233
  • Table 46. CO₂-EOR  market challenges.   238
  • Table 47. CO₂-EOR players.          239
  • Table 48. Key players in CO2 utilization.  247
  • Table 49.Storage and utilization of CO2. 249
  • Table 50. Ocean carbon storage.               253

 

List of Figures

  • Figure 1. Pathways for CO2 use. 20
  • Figure 2. Overview of CCUS market.         21
  • Figure 3. Cost to capture one metric ton of carbon, by sector.      26
  • Figure 4. Global investment in carbon capture 2010-2022.              31
  • Figure 5. CCUS Value Chain.         43
  • Figure 6. Schematic of CCUS process.      47
  • Figure 7. Pathways for CO2 utilization and removal.          48
  • Figure 8. Carbon dioxide utilization and removal cycle.    51
  • Figure 9. Cost estimates for long-distance CO2 transport.               58
  • Figure 10. Applications for CO2. 60
  • Figure 11. Carbonate fuel cell capture process.   64
  • Figure 12. Marine-based CO2 Capture System.   75
  • Figure 13. 3. Overview of CO2 capture processes and systems.    81
  • Figure 14. Post-combustion carbon capture process.        89
  • Figure 15. Oxy-combustion carbon capture process.         91
  • Figure 16. Liquid or supercritical CO2 carbon capture process.     92
  • Figure 17. Pre-combustion carbon capture process.          93
  • Figure 18. Amine-based absorption technology. 95
  • Figure 19. Pressure swing absorption technology.             95
  • Figure 20. Membrane separation technology.     97
  • Figure 21. Liquid or supercritical CO2 (cryogenic) distillation.        98
  • Figure 22. Bioenergy with carbon capture and storage (BECCS) process.  106
  • Figure 23. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.   110
  • Figure 24.  DAC technologies.     113
  • Figure 25. Schematic of Climeworks DAC system.               114
  • Figure 26.  Flow diagram for solid sorbent DAC.  120
  • Figure 27. Flow diagram for the solvent process. 121
  • Figure 28. NuMat’s ION-X cylinders.        123
  • Figure 29. DAC cost breakdown and comparison.               133
  • Figure 30. Comparison of hydrogen production costs from electricity and natural gas with CCUS. 150
  • Figure 31. CO₂ utilization capacity forecast by product (million tonnes of CO₂ per year).   152
  • Figure 32. Carbon utilization annual revenue forecast by product (million US$).   152
  • Figure 33. Life cycle of CO2-derived products and services.            154
  • Figure 34. Sunfire process for Blue Crude production.      158
  • Figure 35. Energy-conversion rate of the ETOGAS process.             158
  • Figure 36. Mass, energy balance and overall system efficiency of the ETL process.               161
  • Figure 37. LanzaTech gas-fermentation process. 161
  • Figure 38. Econic catalyst systems.           162
  • Figure 39. Conversion pathways for CO2-derived methane, methanol and diesel. 169
  • Figure 40. Conversion route for CO2-derived fuels and chemical intermediates.   170
  • Figure 41. Production costs of CO2-derived fuels.              175
  • Figure 42. Players in CO2-derived fuel products. 180
  • Figure 43. Audi synthetic fuels.  181
  • Figure 44. CO₂-derived fuels forecast.             184
  • Figure 45.  Conversion pathways for CO2-derived polymeric materials      188
  • Figure 46. CO₂-derived chemicals forecast.           200
  • Figure 47. Conversion pathway for CO2-derived building materials.           203
  • Figure 48. Conversion pathway for building materials from waste and CO2.            210
  • Figure 49. CO₂-derived building materials forecast.           214
  • Figure 50. Use to enhance the yield of a biological or chemical process.   216
  • Figure 51. CO₂ use in biological yield-boosting forecast.  224
  • Figure 52. Enhanced oil recovery (EOR) principles.             231
  • Figure 53. Following carbon molecules through the mineralization process.      241
  • Figure 54. In situ mineralization. 247
  • Figure 55. Direct Air Capture Process.     292
  • Figure 56. CRI process.   294
  • Figure 57. ECFORM electrolysis reactor. 308
  • Figure 58. Haldor Topsøe’s integral SOEC and TREMP™ system.   328
  • Figure 59. Infinitree swing method.         336

 

 

 

 

The Global Market for Carbon Capture, Utilization and Storage Technologies
The Global Market for Carbon Capture, Utilization and Storage Technologies
PDF download.

The Global Market for Carbon Capture, Utilization and Storage Technologies
The Global Market for Carbon Capture, Utilization and Storage Technologies
PDF download and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com