The Global Market for Hydrogels 2023-2033

0

Published September 2022 | 188 pages, 38 tables, 48 figures | Download table of contents

In recent years, development of hydrogels has intensified for varied applications, especially in the biomedical market including tissue engineering, drug delivery, and biosensing. 

A hydrogel is a three-dimensional (3D) network of hydrophilic polymers that can swell in water and hold a large amount of water while maintaining the structure due to chemical or physical cross-linking of individual polymer chains.

Hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers.  Hydrogels undergo a significant volume phase transition or gel-sol phase transition in response to certain physical and chemical stimuli. The physical stimuli include temperature, electric and magnetic fields, solvent composition, light intensity, and pressure, while the chemical or biochemical stimuli include pH, ions, and specific chemical compositions. 

Report contents include:

  • Assessment of hydrogels by market including applications, key benefits, market megatrends, and main players. Markets covered include biomedicine, water purification & capture, agriculture, building & construction, electronics, energy storage & generation, sensors, membranes and self-healing. 
  • Assessment of types of hydrogels. 
  • Commercially available hydrogel products.
  • Hydrogel revenues 2020-2033, by market. Forecasts for key growth areas, opportunities and demand.
  • In-depth profiles of 60 companies, from medical multinationals to start-ups. Companies profiled include Agrobiogel, AEH Innovative Hydrogel, Amferia AB, Hy2Care, Medtronic, Nanoly Bioscience, OrthoSon, Oxford Medical Products, Purenum GmbH, TYBR Health and many more. 

 

1              RESEARCH METHODOLOGY         13

 

2              INTRODUCTION 14

  • 2.1          What are hydrogels?      14
    • 2.1.1      Structure             15
      • 2.1.1.1   Hybrid hydrogels              16
        • 2.1.1.1.1               Nanocomposite hydrogels           16
        • 2.1.1.1.2               Macromolecular microsphere composite (MMC) hydrogels           16
        • 2.1.1.1.3               Interpenetrating Polymer Networks (IPN) hydrogels         17
        • 2.1.1.1.4               Double-network (DN) hydrogels 17
    • 2.1.2      Classification      17
      • 2.1.2.1   Based on source               18
      • 2.1.2.2   Based on composition    18
      • 2.1.2.3   Based on configuration  19
      • 2.1.2.4   Based on crosslinking     19
      • 2.1.2.5   Size        19
        • 2.1.2.5.1               Microgels            19
        • 2.1.2.5.2               Nanogels             20
      • 2.1.2.6   Environmental response               21
      • 2.1.2.7   Degradability     21
  • 2.2          Synthesis of hydrogels   21
    • 2.2.1      Chemical Crosslinking     24
      • 2.2.1.1   Via monomers  25
      • 2.2.1.2   Via polymers      26
      • 2.2.1.3   Enzymatic crosslinking   26
    • 2.2.2      Physical Crosslinking       27
  • 2.3          Natural polymers             29
    • 2.3.1      Alginate               30
    • 2.3.2      Agarose               30
    • 2.3.3      Carrageenan      31
    • 2.3.4      Chitosan              31
    • 2.3.5      Collagen               31
    • 2.3.6      Dextran 32
    • 2.3.7      Hyaluronic acid  32
    • 2.3.8      Lignin    32
  • 2.4          Synthetic (polymeric) hydrogels 34
  • 2.5          Smart Hydrogels               36
    • 2.5.1      Thermo-Sensitive Hydrogels       37
    • 2.5.2      pH-Sensitive Hydrogels 38
    • 2.5.3      Electro-Sensitive hydrogels         39
    • 2.5.4      Light-Responsive hydrogels         39
    • 2.5.5      Enzyme-Sensitive Hydrogels       40
    • 2.5.6      Shape memory hydrogels (SMH)               40
      • 2.5.6.1   Tough shape memory hydrogels 41
      • 2.5.6.2   Triple-/multi-shape memory hydrogels  41
  • 2.6          Luminescent hydrogels 41
  • 2.7          Nanomaterial based hydrogels   42
    • 2.7.1      Graphene           42
    • 2.7.2      Carbon nanotubes           44
    • 2.7.3      Nanoclays           44
    • 2.7.4      Cellulose nanofibers       44
    • 2.7.5      Cellulose nanocrystals    45
  • 2.8          3D and 4D printed hydrogels      46

 

3              MARKETS AND APPLICATIONS    47

  • 3.1          Hydrogel revenues, by market 2020-2033              47
  • 3.2          Biomedicine       48
    • 3.2.1      Market overview             48
    • 3.2.2      Hydrogel medical products          49
      • 3.2.2.1   Oral delivery      49
      • 3.2.2.2   Ocular   50
      • 3.2.2.3   Wound dressings             51
    • 3.2.3      Injectable hydrogels       55
      • 3.2.3.1   Overview            55
      • 3.2.3.2   Products              57
    • 3.2.4      Coatings on medical implants     64
      • 3.2.4.1   Overview            64
    • 3.2.5      Tissue engineering          65
      • 3.2.5.1   Overview            66
      • 3.2.5.2   Products              67
    • 3.2.6      Skin care and cosmetics 68
      • 3.2.6.1   Overview            68
      • 3.2.6.2   Products              68
    • 3.2.7      Facial correction/aesthetic products        69
      • 3.2.7.1   Overview            70
      • 3.2.7.2   Products              70
    • 3.2.8      Biosensors          72
      • 3.2.8.1   Market overview             72
    • 3.2.9      Other biomedical applications    73
  • 3.3          Water purification and capture  75
    • 3.3.1      Market overview             75
    • 3.3.2      Hydrogel water purification         76
      • 3.3.2.1   Adsorption         76
      • 3.3.2.2   Solar evaporation            76
      • 3.3.2.3   Filtration              77
    • 3.3.3      Water capture   78
  • 3.4          Agriculture          80
    • 3.4.1      Market overview             80
      • 3.4.1.1   Hydrogel fertilizers          80
      • 3.4.1.2   Super Absorbent Polymers (SAPs)            80
      • 3.4.1.3   Natural polymer hydrogels          82
      • 3.4.1.4   Nanomaterials hydrogels              82
      • 3.4.1.5   Methods for application                83
      • 3.4.1.6   Benefits and drawbacks 83
  • 3.5          Building and construction             85
    • 3.5.1      Market overview             85
    • 3.5.2      Applications       85
      • 3.5.2.1   Cement and concrete     85
      • 3.5.2.2   Hydrogels for heating and cooling systems           86
      • 3.5.2.3   Self-healing road surfaces and asphalt    88
  • 3.6          Electronics          89
    • 3.6.1      Market overview             89
    • 3.6.2      Applications       89
      • 3.6.2.1   Conductive hydrogels for soft and flexible electronics      89
  • 3.7          Energy storage and generation  91
    • 3.7.1      Market overview             91
    • 3.7.2      Electrolytes and electrodes         91
      • 3.7.2.1   Conductive hydrogels    92
    • 3.7.3      Batteries              93
    • 3.7.4      Supercapacitors 94
    • 3.7.5      Photovoltaics     95
  • 3.8          Sensors 96
    • 3.8.1      Market overview             96
    • 3.8.2      Applications       96
      • 3.8.2.1   Strain/pressure sensors 96
      • 3.8.2.2   Biosensors          97
      • 3.8.2.3   Food quality sensors       97
  • 3.9          Membranes       98
    • 3.9.1      Market overview             98
    • 3.9.2      Production          98
    • 3.9.3      Applications       99
      • 3.9.3.1   Biomedical membranes 99
        • 3.9.3.1.1               Tissue engineering          99
        • 3.9.3.1.2               Drug delivery     100
        • 3.9.3.1.3               Organ-on-a-chip devices               102
      • 3.9.3.2   Filtration membranes    103
        • 3.9.3.2.1               Gas separation  103
        • 3.9.3.2.2               Oil/water             103
        • 3.9.3.2.3               Water/wastewater treatment    103
  • 3.10        Anti-fouling coatings       105
  • 3.11        Self-healing hydrogels   106
    • 3.11.1    Self-healing mechanisms              106
      • 3.11.1.1                Hydrogen Bonding           107
      • 3.11.1.2                Ionic Bonds         107
      • 3.11.1.3                Host-Guest Interactions 107
      • 3.11.1.4                Hydrophobic Bonds         107
      • 3.11.1.5                Imine Bonds       108
      • 3.11.1.6                Arylhydrazone bonds     108
      • 3.11.1.7                Diels-Alder Reaction       108
    • 3.11.2    Types and materials        109
      • 3.11.2.1                Natural Polymers             110
      • 3.11.2.2                Synthetic polymers         111
      • 3.11.2.3                Polyampholyte self-healing hydrogels     111
        • 3.11.2.3.1             Reversible polymer self-healing hydrogels            111
      • 3.11.2.4                Peptides              112
      • 3.11.2.5                Mussel-inspired proteins              112
      • 3.11.2.6                Bacterial cellulose            112
      • 3.11.2.7                Conductive polymers     113
      • 3.11.2.8                Zwitterionic polymers    115
      • 3.11.2.9                Nanomaterial self-healing hydrogels       115
        • 3.11.2.9.1             Graphene           115
        • 3.11.2.9.2             Carbon nanotubes           116
        • 3.11.2.9.3             Nanoclays           117
        • 3.11.2.9.4             Silicate nanoparticles     117
        • 3.11.2.9.5             Magnetic nanoparticles 117
    • 3.11.3    Markets and applications              117

4              HYDROGEL COMPANY PROFILES 119 (60 company profiles)

 

5              REFERENCES       168

 

List of Tables

  • Table 1. Synthesis methods for hydrogels.            22
  • Table 2. Types of biobased aerogels.       30
  • Table 3. Example markets and applications for lignin.       32
  • Table 4. Applications of smart hydrogels by type.               36
  • Table 5. 4D printed hydrogels.   46
  • Table 6. Market overview of hydrogels in biomedicine.   48
  • Table 7. Clinically approved oral hydrogel products.          49
  • Table 8. Ocular hydrogel applications.     50
  • Table 9. Clinically approved ocular hydrogel products.     50
  • Table 10. Clinically approved wound dressing hydrogel products.               52
  • Table 11. Injectable hydrogels properties and applications.           55
  • Table 12. Clinically approved injectable hydrogels.            57
  • Table 13. Overview of hydrogels in medical implants.       64
  • Table 14. Market overview for hydrogels in tissue engineering.   66
  • Table 15. Hydrogel tissue engineering products. 67
  • Table 16. Commercially available hydrogel cosmetic products.     68
  • Table 17. Market overview of hydrogels in Facial correction/aesthetic products. 70
  • Table 18. Hydrogel Facial correction/aesthetic products. 70
  • Table 19. Market overview for hydrogels in biosensors.  73
  • Table 20. Market overview for hydrogels in water purification and capture.           75
  • Table 21. Benefits and drawbacks of hydrogels in agriculture.       83
  • Table 22. Market overview of hydrogels in buildings and construction.     85
  • Table 23. Hydrogel panel.             87
  • Table 24. Market overview of hydrogels in electronics.    89
  • Table 25. Market overview of hydrogels in energy storage and generation.            91
  • Table 26. Hydrogel tissue-like soft batteries.        92
  • Table 27. Properties and applications of conductive hydrogels.    92
  • Table 28. Hydrogels in batteries.               93
  • Table 29. Hydrogels in supercapacitors. 94
  • Table 30. Hydrogels in the sensors market.           96
  • Table 31. Hydrogels in tissue engineering .            100
  • Table 32. Applications of hydrogel membranes for tissue engineering and drug delivery. 102
  • Table 33.  Applications of hydrogel membranes for separation processes in water/wastewater treatment.              103
  • Table 34. Self-healing natural polymers. 110
  • Table 35. Synthetic polymers.     111
  • Table 36. Components, preparation and properties of representative conductive polymer hydrogels.        114
  • Table 37. Properties of graphene.             115
  • Table 38. Applications of self-healing hydrogels. 117

 

List of Figures

  • Figure 1. Structure of hydrogel. 16
  • Figure 2. Classification of hydrogels based on properties.               18
  • Figure 3. Preparation and potential biomedical applications of click hydrogels, microgels and nanogels.    20
  • Figure 4. Polymers and crosslinking physico-chemistry.   22
  • Figure 5. Schematic illustrations of chemical crosslinking mechanism.       25
  • Figure 6.  Four common free-radical polymerization methods.     26
  • Figure 7. Physically crosslinking stimuli sensitive to hydrogels.     28
  • Figure 8. Schematic of physical crosslinking mechanism. 29
  • Figure 9. Methods for producing bio-based aerogels.       29
  • Figure 10. Classification of polymer hydrogels.    34
  • Figure 11. Types of polymer hydrogels.  35
  • Figure 12. Schematic illustration smart hydrogels subjected to an external stimuli.              36
  • Figure 13. Schematic of thermogel application.   38
  • Figure 14. Applications of pH-sensitive hydrogel sensors in biomedicine. 39
  • Figure 15. Shape memory hydrogel.        40
  • Figure 16. Graphene aerogel.     43
  • Figure 17. Hydrogel revenues, by market 2020-2033 (millions USD).          47
  • Figure 18. Hydrogel wound dressing.       52
  • Figure 19. Injectable hydrogel.   55
  • Figure 20. Schematic illustration of approaches to make injectable hydrogels for cartilage- and bone tissue-engineering applications.              57
  • Figure 21. Hydrogel tissue engineering scaffold. 66
  • Figure 22. Hydrogel mask product.           68
  • Figure 23. Biosensor system structure.   72
  • Figure 24. Schematic of how hydrogels act in water purification by contaminant adsorption.          76
  • Figure 25. Schematic of hydrogels as the materials platform for highly efficient solar water purification.   77
  • Figure 26. Water harvesting with hydrogels.        78
  • Figure 27. Alsta Hydrogel.             81
  • Figure 28. Mechanism of action of hydrogel upon soil-based application. 82
  • Figure 29. Concrete Hydrogels.  86
  • Figure 30. Layered Hydrogel between Wall Panels.            87
  • Figure 31. Schematic of photovoltaic integrated water-electricity-crop co-production system.      95
  • Figure 32. Processes for hydrogel membrane fabrication.              99
  • Figure 33. Hydrogel drug delivery membranes.   101
  • Figure 34. Hydrogel shown in orange strong affinity with water and creates a layer of water on the hull which lowers hull friction.        105
  • Figure 35. Healing process in a hydrogel.               107
  • Figure 36. Chemical and noncovalent interactions behind self-healable hydrogels.             109
  • Figure 37. (A) Wound self-healing process (B) Different forms of wound dressings.             113
  • Figure 38. Organic hydrogel.       120
  • Figure 39. Anpoly cellulose nanofiber hydrogel.  124
  • Figure 40. MEDICELLU™.               125
  • Figure 41. Cellugy materials.        130
  • Figure 42. GelSana Therapeutics hydrogel.           139
  • Figure 43. PeptiGels®.   144
  • Figure 44. MEDAGEL patch.         147
  • Figure 45. Nix Biosensors patch. 148
  • Figure 46. GelrinC Procedure.     156
  • Figure 47. Spider silk production.              161
  • Figure 48. FibDex® wound dressing.        165
  •  

 

The Global Market for Hydrogels 2023-2033
The Global Market for Hydrogels 2023-2033
PDF download.

The Global Market for Hydrogels 2023-2033
The Global Market for Hydrogels 2023-2033
PDF download and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com