The Global Market for Non-Carbon Two-dimensional (2D) Materials

0

Published October 2022 | 118 pages, 45 figures, 22 tables | Download table of contents

Graphene has brought to the world’s attention the exceptional properties of two-dimensional (2D) nanosheet materials. Due to its exceptional transport, mechanical and thermal properties, graphene has been at the forefront of nanomaterials research over the past few years. Its development has enabled researchers to explore other 2D layered materials, such as the transition metal dichalcogenides, a wide variety of oxides and nitrides and clays.

Researchers have therefore looked beyond graphene in recent years to other layered 2D materials, such as borophene, molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN) and phosphorene. These materials possess the intrinsic properties of graphene, such as high electrical conductivity, insulating and semi-conducting properties, high thermal conductivity, high mechanical strength, gas diffusion barriers, high chemical stability and radiation shielding, but crucially also possess a semiconductor band gap. Theoretical and experimental works on these materials have rapidly increased in the past couple of years and they are now commercially available from several advanced materials producers.

Non-carbon 2D materials covered in this report include:

  • borophene.
  • molybdenum disulfide (MoS2).
  • hexagonal boron nitride (h-BN).
  • phosphorene.
  • graphitic carbon nitride.
  • germanene.
  • graphane.
  • graphdiyne.
  • stanene/tinene.
  • tungsten diselenide.
  • rhenium disulfide.
  • diamene.
  • silicene.
  • antimonene.
  • indium selenide.

 

Markets these materials could significantly impact and are covered in this report include:

  • Electronics.
  • Batteries (Lithium-ion, sodium-ion, lithium-sulfur, lithium-oxygen).
  • Sensors.
  • Separation membranes.
  • Photocatalysts.
  • Thermoelectrics.
  • Photovoltaics.

 

Report contents include:

  • Properties of non-carbon 2D materials.
  • Applications of non-carbon 2D materials.
  • Addressable markets for non-carbon 2D materials.
  • Non-carbon 2D materials roadmap.
  • Production and pricing.
  • Profiles of  2D materials producers. 23 companies profiled. 

 

1              GRAPHENE         11

  • 1.1          History  11
  • 1.2          Properties           12
  • 1.3          Types of graphene           13
    • 1.3.1      Graphene materials        14
      • 1.3.1.1   CVD Graphene  14
      • 1.3.1.2   Graphene nanoplatelets               16
      • 1.3.1.3   Graphene oxide and reduced Graphene Oxide    17
      • 1.3.1.4   Graphene quantum dots (GQDs)               18
    • 1.3.2      Intermediate products  31
      • 1.3.2.1   Graphene masterbatches             31
      • 1.3.2.2   Graphene dispersions    31
  • 1.4          Production          32
    • 1.4.1      Quality  34
    • 1.4.2      Assessment of graphene production methods    35

 

2              2-D MATERIALS 39

  • 2.1          Types    42
  • 2.2          Comparative analysis of graphene and other 2D materials              42
  • 2.3          Production methods       44
    • 2.3.1      Top-down exfoliation     44
      • 2.3.1.1   Mechanical exfoliation method 45
      • 2.3.1.2   Liquid exfoliation method            45
    • 2.3.2      Bottom-up synthesis      46
      • 2.3.2.1   Chemical synthesis in solution    46
      • 2.3.2.2   Chemical vapor deposition           46
  • 2.4          Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)        48
    • 2.4.1      Properties           48
    • 2.4.2      Applications and markets             49
      • 2.4.2.1   Electronics          49
      • 2.4.2.2   Fuel cells              50
      • 2.4.2.3   Adsorbents        50
      • 2.4.2.4   Photodetectors 50
      • 2.4.2.5   Textiles 50
      • 2.4.2.6   Biomedical          51
  • 2.5          MXenes               52
    • 2.5.1      Properties           52
      • 2.5.1.1   Applications       53
  • 2.6          Transition metal dichalcogenides (TMD) 55
    • 2.6.1      Properties           55
      • 2.6.1.1   Molybdenum disulphide (MoS2)               56
      • 2.6.1.2   Tungsten ditelluride (WTe2)        57
  • 2.6.2      Applications       57
    • 2.6.2.1   Electronics          57
    • 2.6.2.2   Optoelectronics 58
    • 2.6.2.3   Biomedical          58
    • 2.6.2.4   Piezoelectrics    58
    • 2.6.2.5   Sensors 58
    • 2.6.2.6   Filtration              59
    • 2.6.2.7   Batteries and supercapacitors    59
    • 2.6.2.8   Fiber lasers         59
  • 2.7          Borophene         61
    • 2.7.1      Properties           61
    • 2.7.2      Applications       61
      • 2.7.2.1   Energy storage  61
      • 2.7.2.2   Hydrogen storage            62
      • 2.7.2.3   Sensors 62
      • 2.7.2.4   Electronics          62
  • 2.8          Phosphorene/ Black phosphorus              63
    • 2.8.1      Properties           63
    • 2.8.2      Applications       64
      • 2.8.2.1   Electronics          64
      • 2.8.2.2   Field effect transistors   64
      • 2.8.2.3   Thermoelectrics               65
      • 2.8.2.4   Batteries              65
      • 2.8.2.5   Supercapacitors 66
      • 2.8.2.6   Photodetectors 66
      • 2.8.2.7   Sensors 66
  • 2.9          Graphitic carbon nitride (g-C3N4)             68
    • 2.9.1      Properties           68
    • 2.9.2      C2N        68
    • 2.9.3      Applications       69
      • 2.9.3.1   Electronics          69
      • 2.9.3.2   Filtration membranes    69
      • 2.9.3.3   Photocatalysts  69
      • 2.9.3.4   Batteries              69
      • 2.9.3.5   Sensors 69
  • 2.10        Germanene       70
    • 2.10.1    Properties           70
    • 2.10.2    Applications       71
      • 2.10.2.1                Electronics          72
      • 2.10.2.2                Batteries              72
  • 2.11        Graphdiyne        72
    • 2.11.1    Properties           73
    • 2.11.2    Applications       73
      • 2.11.2.1                Electronics          73
      • 2.11.2.2                Batteries              73
      • 2.11.2.3                Separation membranes 74
      • 2.11.2.4                Water filtration 74
      • 2.11.2.5                Photocatalysts  74
      • 2.11.2.6                Photovoltaics     75
      • 2.11.2.7                Gas separation  75
  • 2.12        Graphane            75
    • 2.12.1    Properties           76
    • 2.12.2    Applications       76
      • 2.12.2.1                Electronics          76
      • 2.12.2.2                Hydrogen storage            76
  • 2.13        Rhenium disulfide (ReS2) and diselenide (ReSe2)               77
    • 2.13.1    Properties           77
    • 2.13.2    Applications       77
  • 2.14        Silicene 78
    • 2.14.1    Properties           78
    • 2.14.2    Applications       79
      • 2.14.2.1                Electronics          79
      • 2.14.2.2                Thermoelectrics               80
      • 2.14.2.3                Batteries              80
      • 2.14.2.4                Sensors 80
      • 2.14.2.5                Biomedical          80
  • 2.15        Stanene/tinene 81
    • 2.15.1    Properties           81
    • 2.15.2    Applications       82
      • 2.15.2.1                Electronics          82
  • 2.16        Antimonene      83
    • 2.16.1    Properties           83
    • 2.16.2    Applications       83
  • 2.17        Indium selenide 84
    • 2.17.1    Properties           84
    • 2.17.2    Applications       84
      • 2.17.2.1                Electronics          84
  • 2.18        Layered double hydroxides (LDH)             85
    • 2.18.1    Properties           85
    • 2.18.2    Applications       85
      • 2.18.2.1                Adsorbents        85
      • 2.18.2.2                Catalyst 85
      • 2.18.2.3                Sensors 85
      • 2.18.2.4                Electrodes           86
      • 2.18.2.5                Flame Retardants            86
      • 2.18.2.6                Biosensors          86
      • 2.18.2.7                Tissue engineering          87
      • 2.18.2.8                Anti-Microbials 87
      • 2.18.2.9                Drug Delivery     87

 

3              COMPANY PROFILES       88 (23 company profiles)

 

4              RESEARCH METHODOLOGY         107

 

5              REFERENCES       108

 

List of Tables

  • Table 1. Properties of graphene, properties of competing materials, applications thereof.               12
  • Table 2. Applications of GO and rGO.       18
  • Table 3. Comparison of graphene QDs and semiconductor QDs.  20
  • Table 4. Advantages and disadvantages of methods for preparing GQDs. 22
  • Table 5. Applications of graphene quantum dots.              23
  • Table 6. Markets and applications for graphene quantum dots in electronics and photonics.          24
  • Table 7. Markets and applications for graphene quantum dots in energy storage and conversion. 25
  • Table 8. Markets and applications for graphene quantum dots in sensors.              26
  • Table 9. Markets and applications for graphene quantum dots in biomedicine and life sciences.   27
  • Table 10. Markets and applications for graphene quantum dots in electronics.     28
  • Table 11. Market and technology challenges for graphene quantum dots.              29
  • Table 12. Prices for graphene quantum dots.       30
  • Table 13. Assessment of graphene production methods. 36
  • Table 14. 2D materials types.      42
  • Table 15. Comparative analysis of graphene and other 2-D nanomaterials.             42
  • Table 16. Comparison of  top-down exfoliation methods to produce 2D materials.              44
  • Table 17. Comparison of the bottom-up synthesis methods to produce 2D materials.        47
  • Table 18. Properties of hexagonal boron nitride (h-BN).  49
  • Table 19. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.               64
  • Table 20. Properties and applications of functionalized germanene.          71
  • Table 21. GDY-based anode materials in LIBs and SIBs      74
  • Table 22. Physical and electronic properties of Stanene. 82

 

List of Figures

  • Figure 1. Graphene layer structure schematic.     11
  • Figure 2. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.       11
  • Figure 3. Graphite and graphene.             12
  • Figure 4. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.   14
  • Figure 5. Types of CVD methods.               15
  • Figure 6. Schematic of the manufacture of GnPs starting from natural graphite.   17
  • Figure 7. Green-fluorescing graphene quantum dots.      19
  • Figure 8. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4).      19
  • Figure 9. Graphene quantum dots.           22
  • Figure 10. Top-down and bottom-up graphene QD synthesis methods.    22
  • Figure 12. Fabrication methods of graphene.       32
  • Figure 13. TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF.         33
  • Figure 14. (a) Graphene powder production line The Sixth Element Materials Technology Co. Ltd. (b) Graphene film production line of Wuxi Graphene Films Co. Ltd. 34
  • Figure 15. Schematic illustration of the main graphene production methods.        35
  • Figure 16. Structures of nanomaterials based on dimensions.       39
  • Figure 17. Schematic of 2-D materials.    41
  • Figure 18. Diagram of the mechanical exfoliation method.             45
  • Figure 19. Diagram of liquid exfoliation method 46
  • Figure 20. Structure of hexagonal boron nitride. 48
  • Figure 21. BN nanosheet textiles application.       51
  • Figure 22. Structure diagram of Ti3C2Tx.                52
  • Figure 23.  Types and applications of 2D TMDCs. 55
  • Figure 24. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2)          56
  • Figure 25. SEM image of MoS2.  56
  • Figure 26. Atomic force microscopy image of a representative MoS2 thin-film transistor. 58
  • Figure 27. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge.            59
  • Figure 28. Borophene schematic.              61
  • Figure 29. Black phosphorus structure.   63
  • Figure 30. Black Phosphorus crystal.        64
  • Figure 31. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation.                65
  • Figure 32: Graphitic carbon nitride.          68
  • Figure 33. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology.         69
  • Figure 34. Schematic of germanene.       70
  • Figure 35. Graphdiyne structure.              72
  • Figure 36. Schematic of Graphane crystal.             75
  • Figure 37. Schematic of a monolayer of rhenium disulfide.            77
  • Figure 38. Silicene structure.       78
  • Figure 39. Monolayer silicene on a silver (111) substrate.               79
  • Figure 40. Silicene transistor.      79
  • Figure 41. Crystal structure for stanene. 81
  • Figure 42. Atomic structure model for the 2D stanene on Bi2Te3(111).     82
  • Figure 43. Schematic of Indium Selenide (InSe). 84
  • Figure 44. Application of Li-Al LDH as CO2 sensor.             86
  • Figure 45. Graphene-based membrane dehumidification test cell.              95

 

 

The Global Market for Non-Carbon Two-dimensional (2D) Materials
The Global Market for Non-Carbon Two-dimensional (2D) Materials
PDF download.

The Global Market for Non-Carbon Two-dimensional (2D) Materials
The Global Market for Non-Carbon Two-dimensional (2D) Materials
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com