The Global Market for Thermal Interface Materials 2023-2033

0

 Published March 2023 | 170 pages, 19 figures, 17 tables | Download table of contents

The effective transfer/removal of heat from a semiconductor device is crucial to ensure reliable operation and to enhance the lifetime of these components. The development of high-power and high-frequency electronic devices has greatly increased issues with excessive heat accumulation. There is therefore a significant requirement for effective thermal management materials to remove excess heat from electronic devices to ambient environment.

Thermal interface materials (TIMs) offer efficient heat dissipation to maintain proper functions and lifetime for these devices. TIMs are materials that are applied between the interfaces of two components (typically a heat generating device such as microprocessors, photonic integrated circuits, etc. and a heat dissipating device e.g. heat sink) to enhance the thermal coupling between these devices. A range of Carbon-based, metal/solder and filler-based TIMs are available both commercially and in the research and development (R&D) phase.

Report contents include:

  • Analysis of recent commercial and R&D developments in thermal interface materials (TIMs).
  • Market trends and drivers.
  • Market map. 
  • Analysis of thermal interface materials (TIMs) including:
    • Thermal Pads/Insulators.
    • Thermally Conductive Adhesives.
    • Thermal Compounds or Greases.
    • Thermally Conductive Epoxy/Adhesives.
    • Phase Change Materials.
    • Metal-based TIMs.
    • Carbon-based TIMs.
  • Market analysis. Markets covered include:
    • Consumer electronics.
    • Electric Vehicles (EV) batteries.
    • Data Center infrastructure.
    • ADAS sensors.
    • EMI shielding.
    • 5G.
  • Global market revenues for thermal interface materials (TIMs), historical and forecast to 2033. 
  • Profiles of 63 producers. Companies profiled include Arieca, Carbice Corporation, CondAlign, Fujipoly, Henkel, Indium Corporation, KULR Technology Group, Inc., Parker-Hannifin Corporation, Samyang Corporation and SHT Smart High-Tech AB. 

 

 

1              INTRODUCTION 10

  • 1.1          What are thermal interface materials (TIMs)?     10
  • 1.2          Properties           11
  • 1.2.1      Thermal conductivity      12
  • 1.3          Comparative properties of TIMs 13
  • 1.4          Advantages and disadvantages of TIMs, by type. 14
  • 1.5          Prices    16

 

2              MATERIALS         18

  • 2.1          Thermal Pads/Insulators               18
  • 2.2          Thermally Conductive Adhesives               19
  • 2.3          Thermal Compounds or Greases 21
  • 2.4          Thermally Conductive Epoxy/Adhesives 22
  • 2.5          Phase Change Materials 24
    • 2.5.1      Properties of Phase Change Materials (PCMs)     24
    • 2.5.2      Types    25
      • 2.5.2.1   Organic/biobased phase change materials            27
        • 2.5.2.1.1               Advantages and disadvantages  27
        • 2.5.2.1.2               Paraffin wax       28
        • 2.5.2.1.3               Non-Paraffins/Bio-based              28
      • 2.5.2.2   Inorganic phase change materials             29
        • 2.5.2.2.1               Salt hydrates      29
          • 2.5.2.2.1.1           Advantages and disadvantages  30
        • 2.5.2.2.2               Metal and metal alloy PCMs (High-temperature) 30
      • 2.5.2.3   Eutectic mixtures             31
      • 2.5.2.4   Encapsulation of PCMs  31
        • 2.5.2.4.1               Macroencapsulation       32
        • 2.5.2.4.2               Micro/nanoencapsulation            32
      • 2.5.2.5   Nanomaterial phase change materials     32
    • 2.5.3      Thermal energy storage (TES)     33
      • 2.5.3.1   Sensible heat storage     33
      • 2.5.3.2   Latent heat storage         34
    • 2.5.4      Application in TIMs         34
  • 2.6          Metal-based TIMs           37
    • 2.6.1      Solders and low melting temperature alloy TIMs 37
    • 2.6.2      Liquid metals     38
    • 2.6.3      Solid liquid hybrid (SLH) metals  40
  • 2.7          Carbon-based TIMs         41
    • 2.7.1      Multi-walled nanotubes (MWCNT)           42
      • 2.7.1.1   Properties           43
      • 2.7.1.2   Application as thermal interface materials            43
    • 2.7.2      Single-walled carbon nanotubes (SWCNTs)           45
      • 2.7.2.1   Properties           45
      • 2.7.2.2   Application as thermal interface materials            46
    • 2.7.3      Vertically aligned CNTs (VACNTs)              46
      • 2.7.3.1   Properties           46
      • 2.7.3.2   Application as thermal interface materials            47
    • 2.7.4      BN nanotubes (BNNT) and nanosheets (BNNS).  48
      • 2.7.4.1   Properties           48
      • 2.7.4.2   Application as thermal interface materials            49
    • 2.7.5      Graphene           50
      • 2.7.5.1   Properties           50
      • 2.7.5.2   Application as thermal interface materials            52
    • 2.7.6      Nanodiamonds 52
      • 2.7.6.1   Properties           52
      • 2.7.6.2   Application as thermal interface materials            53
    • 2.7.7      Graphite flakes 54
      • 2.7.7.1   Properties           55
      • 2.7.7.2   Application as thermal interface materials            55

 

3              MARKETS FOR THERMAL INTERFACE MATERIALS (TIMs)  59

  • 3.1          Consumer electronics    59
    • 3.1.1      Overview            60
    • 3.1.2      Applications       61
  • 3.2          EV Batteries       64
    • 3.2.1      Overview            64
    • 3.2.2      Applications       65
  • 3.3          Data Centers      69
    • 3.3.1      Overview            69
    • 3.3.2      Applications       72
  • 3.4          ADAS Sensors    75
    • 3.4.1      Overview            75
    • 3.4.2      Applications       77
  • 3.5          EMI shielding     84
    • 3.5.1      Overview            84
    • 3.5.2     Applications           8
  • 3.6          5G          88
    • 3.6.1      Overview            88
    • 3.6.2      Applications       92
  • 3.7          Global revenues for TIMs 2018-2033, by market 93
  • 3.8          Future market prospects              96

 

4              COMPANY PROFILES       97 (63 company profiles)

 

5              RESEARCH METHODOLOGY         163

 

6              REFERENCES       164

 

List of Tables

  • Table 1. Thermal Conductivity vs Thermal Resistance.      11
  • Table 2. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers.           12
  • Table 3. Thermal conductivity of common types of fillers..             12
  • Table 4.  Basic physical properties of commercially available TIMs              12
  • Table 5. Commercial TIMs and their properties.  13
  • Table 6. Advantages and disadvantages of TIMs, by type.               14
  • Table 7. Fabrication methods and thermal performances of advanced thermal interface materials.             22
  • Table 8. Properties of PCMs.       24
  • Table 9.  PCM Types and properties.        26
  • Table 10. Advantages and disadvantages of organic PCMs.            27
  • Table 11. Advantages and disadvantages of organic PCM Fatty Acids.        29
  • Table 12. Advantages and disadvantages of salt hydrates               30
  • Table 13. Advantages and disadvantages of low melting point metals.      31
  • Table 14. Advantages and disadvantages of eutectics.     31
  • Table 15. Summary of thermal conductivities (κ) of carbon-based TIMs.  41
  • Table 16. TIMS in EV batteries.   65
  • Table 17. Global revenues for TIMs 2018-2033, by market.            94

 

List of Figures

  • Figure 1. Schematic representation of working principle of a TIM.               10
  • Figure 2. Thermal Pads die cut to a precise shape, ready for assembly.     18
  • Figure 3. Thermally conductive liquid epoxy.       20
  • Figure 4. Strip of 3M thermal conductive adhesive transfer tape 8810 kiss cut on a roll.    20
  • Figure 5. Thermal resistance of silicone grease with different types of CNTs.          21
  • Figure 6. Thermal Grease product.           22
  • Figure 7. PCM mode of operation.            25
  • Figure 8. Classification of PCMs. 26
  • Figure 9. Phase-change materials in their original states. 26
  • Figure 10. Thermal energy storage materials.       33
  • Figure 11. Phase Change Material transient behaviour.   34
  • Figure 12. Phase Change Material - die cut pads ready for assembly.         35
  • Figure 13. SEM image of vertically aligned CNT.  46
  • Figure 14. Schematic of Thermal Management Materials in smartphone. 61
  • Figure 15. Coolzorb 5G. 85
  • Figure 16. Schlegel EMI - Shielding Gaskets.         85
  • Figure 17. Panasonic G-TIM.        87
  • Figure 18. Global revenues for TIMs 2018-2033, by market.          95
  • Figure 19. HI-FLOW Phase Change Materials.       133

 

 

 

 

The Global Market for Thermal Interface Materials 2023-2033
The Global Market for Thermal Interface Materials 2023-2033
PDF download.

The Global Market for Thermal Interface Materials 2023-2033
The Global Market for Thermal Interface Materials 2023-2033
PDF and print edition.

Payment methods: Visa, Mastercard, American Express, Paypal. 

To purchase by invoice (bank transfer) or in an alternative currency please contact info@futuremarketsinc.com