The Global Market for Thermal Management Materials and Systems 2024-2034

0

Published August 2023 | 320 pages, 81 figures, 35 tables | Download Table of contents

Effective thermal management is critical across industries from microelectronics to electric vehicles to aerospace systems. With increasing power densities and decreasing form factors, innovative materials and design solutions are required to dissipate escalating heat loads. This report provided an overview of key technologies and techniques enabling safe, reliable and high performance thermal control. Main topics covered included:

  • Thermal management materials – Heat spreaders, heat sinks, phase change materials, thermal interface materials, and advanced composites.
  • Thermal management systems – Immersion cooling, battery thermal management, heat exchangers, thermoelectric coolers.
  • Direct liquid cooling – Microchannel heat sinks, jet impingement, spray cooling, and chip immersion techniques.
  • Passive heat transfer – Heat pipes, vapor chambers, and phase change materials.

 

Key areas covered include:

  • Thermal interface materials - greases, gels, pads, gap fillers
  • Heat spreaders and heat sinks - design, materials, optimization
  • Phase change materials - characteristics, electronics and battery applications
  • Immersion cooling systems - for high heat flux removal in data centers
  • Battery thermal management - for electric vehicles
  • Heat pipes and vapor chambers - operating principles, wick structures
  • Thermoelectric cooling - Peltier modules, precision temperature control
  • Direct chip cooling - microchannel heat sinks, jet impingement, spray cooling

 

Key market areas covered include:

  • Electronics cooling - CPUs, GPUs, power electronics for computing and data centers
  • Automotive cooling - powertrain components, battery thermal management for electric vehicles
  • Aerospace and space - avionics, instruments, thermal control systems for aircraft and spacecraft
  • Energy systems - photovoltaics, nuclear, turbine heat management
  • Industrial - motor drives, power supplies, high power lasers, RF amplifiers
  • Biomedical - medical imaging, analyzers, therapy devices
  • Consumer products - mobile phones, laptops, LED lighting, appliances

 

The report explores thermal management solutions across these diverse markets spanning from microelectronics to electric vehicles to avionics and space systems. Each market has unique requirements and challenges related to heat fluxes, environments, form factors, and performance needs. Key underlying technologies are examined in the context of enabling effective thermal control in these applications. The analysis provides insights into applying advanced thermal management materials and techniques to meet critical needs in these technology sectors.

The report features profiles of 144 companies in thermal management. Companies profiled include 3M, Arieca, Arteco Coolants, Carbice Corporation, CondAlign, Dexerials, Fujipoly, Henkel, Indium Corporation, KULR Technology Group, Inc., Parker-Hannifin Corporation, Senior Flexonics, Shin-Etsu Chemical Co., Ltd, and SHT Smart High-Tech AB. 

 

The Global Market for Thermal Management Materials and Systems 2024-2034
The Global Market for Thermal Management Materials and Systems 2024-2034
PDF download.

The Global Market for Thermal Management Materials and Systems 2024-2034
The Global Market for Thermal Management Materials and Systems 2024-2034
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.

 

 

1              INTRODUCTION 18

  • 1.1          Thermal management   18
    • 1.1.1      Active   18
    • 1.1.2      Passive 19
  • 1.2          Thermal Management Systems 19
    • 1.2.1      Immersion Cooling Systems for Data Centers       19
    • 1.2.2      Battery Thermal Management for Electric Vehicles           20
    • 1.2.3      Heat Exchangers for Aerospace Cooling  21
  • 1.3          Main types of thermal management materials and technologies 21

 

2              PHASE CHANGE MATERIALS        22

  • 2.1          Properties of Phase Change Materials (PCMs)     23
  • 2.2          Types    25
    • 2.2.1      Organic/biobased phase change materials            27
      • 2.2.1.1   Advantages and disadvantages  27
      • 2.2.1.2   Paraffin wax       28
      • 2.2.1.3   Non-Paraffins/Bio-based              28
    • 2.2.2      Inorganic phase change materials             29
      • 2.2.2.1   Salt hydrates      29
        • 2.2.2.1.1               Advantages and disadvantages  30
      • 2.2.2.2   Metal and metal alloy PCMs (High-temperature) 31
    • 2.2.3      Eutectic mixtures             31
    • 2.2.4      Encapsulation of PCMs  31
      • 2.2.4.1   Macroencapsulation       32
      • 2.2.4.2   Micro/nanoencapsulation            32
    • 2.2.5      Nanomaterial phase change materials     33
  • 2.3          Thermal energy storage (TES)     33
    • 2.3.1      Sensible heat storage     33
    • 2.3.2      Latent heat storage         34
  • 2.4          Battery Thermal Management   34

 

3              THERMAL INTERFACE MATERIALS             35

  • 3.1          What are thermal interface materials (TIMs)?     36
    • 3.1.1      Types    37
    • 3.1.2      Thermal conductivity      39
  • 3.2          Comparative properties of TIMs 40
  • 3.3          Advantages and disadvantages of TIMs, by type 41
  • 3.4          Prices    44
  • 3.5          Thermal greases and pastes        46
  • 3.6          Thermal gap pads            47
  • 3.7          Thermal gap fillers           48
  • 3.8          Thermal adhesives and potting compounds          49
  • 3.9          Metal-based TIMs           51
    • 3.9.1      Solders and low melting temperature alloy TIMs 51
    • 3.9.2      Liquid metals     53
    • 3.9.3      Solid liquid hybrid (SLH) metals  53
      • 3.9.3.1   Hybrid liquid metal pastes           54
      • 3.9.3.2   SLH created during chip assembly (m2TIMs)        55
  • 3.10        Carbon-based TIMs         56
    • 3.10.1    Multi-walled nanotubes (MWCNT)           56
      • 3.10.1.1                Properties           57
      • 3.10.1.2                Application as thermal interface materials            58
    • 3.10.2    Single-walled carbon nanotubes (SWCNTs)           58
      • 3.10.2.1                Properties           59
      • 3.10.2.2                Application as thermal interface materials            62
    • 3.10.3    Vertically aligned CNTs (VACNTs)              62
      • 3.10.3.1                Properties           62
      • 3.10.3.2                Applications       62
      • 3.10.3.3                Application as thermal interface materials            63
    • 3.10.4    BN nanotubes (BNNT) and nanosheets (BNNS)   64
      • 3.10.4.1                Properties           64
      • 3.10.4.2                Application as thermal interface materials            64
    • 3.10.5    Graphene           66
      • 3.10.5.1                Properties           67
      • 3.10.5.2                Application as thermal interface materials            69
        • 3.10.5.2.1             Graphene fillers 69
        • 3.10.5.2.2             Graphene foam 69
        • 3.10.5.2.3             Graphene aerogel           69
    • 3.10.6    Nanodiamonds 70
      • 3.10.6.1                Properties           70
      • 3.10.6.2                Application as thermal interface materials            72
    • 3.10.7    Graphite              72
      • 3.10.7.1                Properties           72
      • 3.10.7.2                Natural graphite               73
        • 3.10.7.2.1             Classification      74
        • 3.10.7.2.2             Processing          75
        • 3.10.7.2.3             Flake     75
          • 3.10.7.2.3.1         Grades 76
          • 3.10.7.2.3.2         Applications       76
      • 3.10.7.3                Synthetic graphite           78
        • 3.10.7.3.1             Classification      78
          • 3.10.7.3.1.1         Primary synthetic graphite           79
          • 3.10.7.3.1.2         Secondary synthetic graphite      79
          • 3.10.7.3.1.3         Processing          79
      • 3.10.7.4                Applications as thermal interface materials           80
    • 3.10.8    Hexagonal Boron Nitride               81
      • 3.10.8.1                Properties           81
      • 3.10.8.2                Application as thermal interface materials            83
  • 3.11        Metamaterials  83
    • 3.11.1    Types and properties     84
      • 3.11.1.1                Electromagnetic metamaterials 85
        • 3.11.1.1.1             Double negative (DNG) metamaterials   85
        • 3.11.1.1.2             Single negative metamaterials   85
        • 3.11.1.1.3             Electromagnetic bandgap metamaterials (EBG)  85
        • 3.11.1.1.4             Bi-isotropic and bianisotropic metamaterials       86
        • 3.11.1.1.5             Chiral metamaterials      86
        • 3.11.1.1.6             Electromagnetic “Invisibility” cloak           87
      • 3.11.1.2                Terahertz metamaterials              87
      • 3.11.1.3                Photonic metamaterials 87
      • 3.11.1.4                Tunable metamaterials  88
      • 3.11.1.5                Frequency selective surface (FSS) based metamaterials  88
      • 3.11.1.6                Nonlinear metamaterials              88
      • 3.11.1.7                Acoustic metamaterials 89
    • 3.11.2    Application as thermal interface materials            89
  • 3.12        Self-healing thermal interface materials 90
    • 3.12.1    Extrinsic self-healing       91
    • 3.12.2    Capsule-based  91
    • 3.12.3    Vascular self-healing      91
    • 3.12.4    Intrinsic self-healing       92
    • 3.12.5    Healing volume 93
    • 3.12.6    Types of self-healing materials, polymers and coatings    94
    • 3.12.7    Applications in thermal interface materials           95
  • 3.13        Phase change thermal interface materials (PCTIMs)          95
    • 3.13.1    Thermal pads     97
    • 3.13.2    Low Melting Alloys (LMAs)           97

 

4              HEAT SPREADERS AND HEAT SINKS          98

  • 4.1          Design  99
  • 4.2          Materials             100
    • 4.2.1      Aluminum alloys               100
    • 4.2.2      Copper 101
    • 4.2.3      Metal foams      101
    • 4.2.4      Metal matrix composites              102
    • 4.2.5      Graphene           103
    • 4.2.6      Carbon foams and nanotubes     103
    • 4.2.7      Graphite              103
    • 4.2.8      Diamond              104
    • 4.2.9      Liquid immersion cooling              104
  • 4.3          Market overview             105
    • 4.3.1      Applications       105
    • 4.3.2      Market players  105
  • 4.4          Challenges          106

 

5              HEAT EXCHANGERS         108

  • 5.1          Design  108
  • 5.2          Types    109
  • 5.3          Key materials     110
  • 5.4          Recent innovation           112
  • 5.5          Market overview             112
    • 5.5.1      Applications       113
    • 5.5.2      Market players  113

 

6              LIQUID COOLING SYSTEMS           114

  • 6.1          Design  114
  • 6.2          Types    115
  • 6.3          Liquid Coolants 115
  • 6.4          Components of Liquid Cooling Systems  116
  • 6.5          Benefits               116
  • 6.6          Challenges          116
  • 6.7          Recent innovation           117
  • 6.8          Market overview             117

 

7              AIR COOLING     118

  • 7.1          Introduction       118
  • 7.2          Air Cooling Methods       119
  • 7.3          Design  120
  • 7.4          Recent innovation           121
  • 7.5          Applications       122
  • 7.6          Market overview             124

 

8              COOLING PLATES             126

  • 8.1          Overview            126
  • 8.2          Design  126
  • 8.3          Enhancement Techniques            127
  • 8.4          Applications       128
  • 8.5          Recent innovation           129
  • 8.6          Market overview             130

 

9              SPRAY COOLING               131

  • 9.1          Overview            131
  • 9.2          Heat Transfer Mechanisms          132
  • 9.3          Spray Cooling Fluids        132
  • 9.4          Applications       134
  • 9.5          Recent innovation           134

 

10           IMMERSION COOLING   135

  • 10.1        Overview            135
  • 10.2        Common immersion fluids           136
  • 10.3        Benefits               136
  • 10.4        Challenges          137
  • 10.5        Recent innovation           137

 

11           THERMOELECTRIC COOLERS        138

  • 11.1        Thermoelectric Modules               138
  • 11.2        Performance Factors      138
  • 11.3        Electronics Cooling          139

 

12           COOLANT FLUIDS FOR EVS           139

  • 12.1        Coolant Fluid Requirements        140
  • 12.2        Common EV Coolant Fluids          140
  • 12.3        Recent innovations         141

 

13           MARKETS FOR THERMAL MANAGEMENT MATERIALS AND SYSTEMS            143

  • 13.1        Consumer electronics    143
    • 13.1.1    Market overview             143
      • 13.1.1.1                Market drivers  143
      • 13.1.1.2                Applications       144
        • 13.1.1.2.1             Smartphones and tablets              144
        • 13.1.1.2.2             Wearable electronics      145
    • 13.1.2    Global market revenues 2018-2034          147
  • 13.2        Electric Vehicles (EV)      148
    • 13.2.1    Market overview             148
      • 13.2.1.1                Market drivers  148
      • 13.2.1.2                Applications       149
        • 13.2.1.2.1             Lithium-ion batteries      149
          • 13.2.1.2.1.1         Cell-to-pack designs        150
          • 13.2.1.2.1.2         Cell-to-chassis/body       151
        • 13.2.1.2.2             Electric motors  152
        • 13.2.1.2.3             Power electronics            154
        • 13.2.1.2.4             Charging stations             155
  • 13.3        Data Centers      157
    • 13.3.1    Market overview             157
      • 13.3.1.1                Market drivers  157
      • 13.3.1.2                Applications       158
        • 13.3.1.2.1             Router, switches and line cards  158
        • 13.3.1.2.2             Servers 159
        • 13.3.1.2.3             Power supply converters              160
  • 13.4        ADAS Sensors    161
    • 13.4.1    Market overview             161
      • 13.4.1.1                Market drivers  161
      • 13.4.1.2                Applications       161
        • 13.4.1.2.1             ADAS Cameras  162
        • 13.4.1.2.2             ADAS Radar        162
        • 13.4.1.2.3             ADAS LiDAR        163
  • 13.5        EMI shielding     164
    • 13.5.1    Market overview             164
      • 13.5.1.1                Market drivers  164
      • 13.5.1.2                Applications       164
  • 13.6        5G          165
    • 13.6.1    Market overview             165
      • 13.6.1.1                Market drivers  165
      • 13.6.1.2                Applications       165
        • 13.6.1.2.1             Antenna              165
        • 13.6.1.2.2             Base Band Unit (BBU)     167

 

14           GLOBAL REVENUES FOR TIMS     173

  • 14.1        Global revenues for 2022, by type            173
  • 14.2        Global revenues 2023-2033, by materials type    175
    • 14.2.1    Telecommunications market       175
    • 14.2.2    Electronics and data centers market        176
    • 14.2.3    ADAS market     177
    • 14.2.4    Electric vehicles (EVs) market     178
  • 14.3        By market           179
  • 14.4        Global revenues for thermal management materials and systems 2018-2034, by region   182

 

15           FUTURE MARKET OUTLOOK         183

 

16           COMPANY PROFILES       184 (144 company profiles)

 

17           RESEARCH METHODOLOGY         310

 

18           REFERENCES       312

 

List of Tables

  • Table 1. Comparison active and passive thermal management.   19
  • Table 2. Common PCMs used in electronics cooling and their melting temperatures.         23
  • Table 3. Properties of PCMs.       24
  • Table 4.  PCM Types and properties.        26
  • Table 5. Advantages and disadvantages of organic PCMs.               27
  • Table 6. Advantages and disadvantages of organic PCM Fatty Acids.          29
  • Table 7. Advantages and disadvantages of salt hydrates  30
  • Table 8. Advantages and disadvantages of low melting point metals.         31
  • Table 9. Advantages and disadvantages of eutectics.        31
  • Table 10. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.   39
  • Table 11. Commercial TIMs and their properties.               40
  • Table 12. Advantages and disadvantages of TIMs, by type.             41
  • Table 13. Thermal interface materials prices.       44
  • Table 14. Characteristics of some typical TIMs.    45
  • Table 15. Properties of CNTs and comparable materials. 57
  • Table 16. Typical properties of SWCNT and MWCNT.        59
  • Table 17. Comparison of carbon-based additives in terms of the main parameters influencing their value proposition as a conductive additive.               61
  • Table 18. Thermal conductivity of CNT-based polymer composites.           63
  • Table 19. Comparative properties of BNNTs and CNTs.    64
  • Table 20. Properties of graphene, properties of competing materials, applications thereof.            67
  • Table 21. Properties of nanodiamonds.  71
  • Table 22. Comparison between Natural and Synthetic Graphite. 72
  • Table 23. Classification of natural graphite with its characteristics.             74
  • Table 24. Characteristics of synthetic graphite.    78
  • Table 25. Properties of hexagonal boron nitride (h-BN).  82
  • Table 26. Types of self-healing coatings and materials.     94
  • Table 27. Comparative properties of self-healing materials.           95
  • Table 28. Benefits and drawbacks of PCMs in TIMs.           95
  • Table 29. Challenges with heat spreaders and heat sinks.               106
  • Table 30. Global revenues for thermal management materials and systems, 2018-2034, by type. 173
  • Table 31. Global revenues for TIMs 2018-2034, by market (millions USD) 179
  • Table 32. Carbodeon Ltd. Oy nanodiamond product list.  212
  • Table 33. CrodaTherm Range.     214
  • Table 34. Ray-Techniques Ltd. nanodiamonds product list.             279
  • Table 35. Comparison of ND produced by detonation and laser synthesis.              279

 

List of Figures

  • Figure 1. Phase-change TIM products.    23
  • Figure 2. PCM mode of operation.            25
  • Figure 3. Classification of PCMs. 26
  • Figure 4. Phase-change materials in their original states. 26
  • Figure 5. Thermal energy storage materials.         33
  • Figure 6. Phase Change Material transient behaviour.      34
  • Figure 7. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material.  36
  • Figure 8. Schematic of thermal interface materials used in a flip chip package.      37
  • Figure 9. Thermal grease.             38
  • Figure 10. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             39
  • Figure 11. Application of thermal silicone grease.              46
  • Figure 12. A range of thermal grease products.   47
  • Figure 13. Thermal Pad. 48
  • Figure 14. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             49
  • Figure 15. Thermal tapes.             50
  • Figure 16. Thermal adhesive products.   50
  • Figure 17. Typical IC package construction identifying TIM1 and TIM2       52
  • Figure 18. Liquid metal TIM product.       53
  • Figure 19. Pre-mixed SLH.            54
  • Figure 20. HLM paste and Liquid Metal Before and After Thermal Cycling.               55
  • Figure 21.  SLH with Solid Solder Preform.             55
  • Figure 22. Automated process for SLH with solid solder preforms and liquid metal.             56
  • Figure 23. Schematic diagram of a multi-walled carbon nanotube (MWCNT).        57
  • Figure 24. Schematic of single-walled carbon nanotube. 59
  • Figure 25. Types of single-walled carbon nanotubes.        61
  • Figure 26. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.         63
  • Figure 27. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red. 64
  • Figure 28. Graphene layer structure schematic.  66
  • Figure 29. Illustrative procedure of the Scotch-tape based micromechanical cleavage of HOPG.    66
  • Figure 30. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.   68
  • Figure 31. Detonation Nanodiamond.     71
  • Figure 32. DND primary particles and properties.               71
  • Figure 33. Flake graphite.             76
  • Figure 34. Applications of flake graphite.               77
  • Figure 35. Graphite-based TIM products.               80
  • Figure 36. Structure of hexagonal boron nitride. 81
  • Figure 37. Classification of metamaterials based on functionalities.            84
  • Figure 38. Electromagnetic metamaterial.             85
  • Figure 39. Schematic of Electromagnetic Band Gap (EBG) structure.          86
  • Figure 40. Schematic of chiral metamaterials.      87
  • Figure 41. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer. 89
  • Figure 42. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.  90
  • Figure 43. Stages of self-healing mechanism.       91
  • Figure 44. Self-healing mechanism in vascular self-healing systems.          92
  • Figure 45. Comparison of self-healing systems.   93
  • Figure 46. PCM TIMs.     96
  • Figure 47. Phase Change Material - die cut pads ready for assembly.         97
  • Figure 48. Schematic of TIM operation in electronic devices.        144
  • Figure 49. Schematic of Thermal Management Materials in smartphone. 145
  • Figure 50. Wearable technology inventions.         146
  • Figure 51. Global market revenues in electronics 2018-2024, by type, million USD.             147
  • Figure 52. Application of thermal interface materials in automobiles.       148
  • Figure 53. EV battery components including TIMs.             150
  • Figure 54. Battery pack with a cell-to-pack design and prismatic cells.       151
  • Figure 55. Cell-to-chassis battery pack.   152
  • Figure 56. TIMS in EV charging station.   156
  • Figure 57. Image of data center layout.   158
  • Figure 58. Application of TIMs in line card.            159
  • Figure 59. ADAS radar unit incorporating TIMs.   163
  • Figure 60. Coolzorb 5G. 164
  • Figure 61. TIMs in Base Band Unit (BBU).               167
  • Figure 62. Global revenues for thermal management materials and systems, 2018-2034, by type. 173
  • Figure 63. Global revenues for thermal management materials and systems in telecommuncations, 2018-2034, by type.     175
  • Figure 64. Global revenues for thermal management materials and systems in electronics & data centers, 2018-2034, by type.               176
  • Figure 65. Global revenues for thermal management materials and systems in ADAS, 2018-2034, by type.Source: Future Markets, Inc.       177
  • Figure 66. Global revenues for thermal management materials and systems in Electric Vehicles (EVs), 2018-2034, by type.     178
  • Figure 67. Global revenues for TIMs 2018-2033, by market.          181
  • Figure 68. Boron Nitride Nanotubes products.    204
  • Figure 69. Transtherm® PCMs.   206
  • Figure 70. Carbice carbon nanotubes.     209
  • Figure 71.  Internal structure of carbon nanotube adhesive sheet.             232
  • Figure 72. Carbon nanotube adhesive sheet.       233
  • Figure 73. HI-FLOW Phase Change Materials.       243
  • Figure 74. Thermoelectric foil, consists of a sequence of semiconductor elements connected with conductive metal. At the top (in red) is the thermal interface. 258
  • Figure 75. Parker Chomerics THERM-A-GAP GEL. 268
  • Figure 76. Crēdo™ ProMed transport bags.           270
  • Figure 77. Metamaterial structure used to control thermal emission.        273
  • Figure 78. Shinko Carbon Nanotube TIM product.              294
  • Figure 79. The Sixth Element graphene products.              298
  • Figure 80. Thermal conductive graphene film.     299
  • Figure 81. VB Series of TIMS from Zeon. 309

 

 

 

 

 

The Global Market for Thermal Management Materials and Systems 2024-2034
The Global Market for Thermal Management Materials and Systems 2024-2034
PDF download.

The Global Market for Thermal Management Materials and Systems 2024-2034
The Global Market for Thermal Management Materials and Systems 2024-2034
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout