The Global Self-Healing Materials Market 2025-2035

0

Capture

  • Published: March 2025
  • Pages: 210
  • Tables: 52
  • Figures: 60

 

Self-healing materials represent a revolutionary class of smart materials engineered to detect damage and autonomously repair themselves, mimicking biological systems' remarkable ability to heal wounds. These materials incorporate specialized mechanisms that activate upon damage, initiating repair processes without external intervention to restore structural integrity and functional properties. This autonomous repair capability addresses a fundamental limitation of conventional materials – their inevitable degradation through mechanical damage, environmental exposure, and aging.

By extending product lifespans and reducing maintenance requirements, these materials offer substantial economic benefits through decreased replacement frequency, minimized downtime, and reduced repair costs. In critical applications like aerospace components, infrastructure elements, and medical implants, self-healing capabilities enhance safety by preventing catastrophic failures that could result from undetected damage progression. Self-healing technologies operate through several distinct mechanisms. Extrinsic systems utilize embedded healing agents in microcapsules or vascular networks that release upon damage to fill cracks and restore properties. Intrinsic systems leverage dynamic chemical bonds that can reform after breakage, enabling multiple healing cycles without depleting resources. Advanced approaches include shape memory assisted healing and stimulus-responsive systems activated by heat, light, or electrical signals.

The environmental impact of self-healing materials is particularly significant, as they contribute to sustainability by reducing material consumption, extending product lifespans, and decreasing waste generation. By enabling longer service life for everything from concrete infrastructure to electronic components, these materials align with circular economy principles and resource conservation objectives.

As manufacturing processes mature and costs decrease, self-healing capabilities are transitioning from specialized high-value applications toward mainstream adoption across consumer products, building materials, transportation systems, and electronic devices. This evolution is accelerating through interdisciplinary collaboration between materials scientists, chemists, engineers, and biologists, who continue to develop increasingly sophisticated self-healing mechanisms inspired by natural processes and enhanced through advanced manufacturing techniques.

The automotive and aerospace sectors currently lead adoption. Self-healing clearcoats and protective finishes in automotive applications have transitioned from luxury vehicles to mainstream production models, while aerospace implementations focus on structural components and corrosion-resistant coatings that enhance safety while reducing maintenance intervals. Construction materials represent the fastest-growing application segment, with self-healing concrete solutions gaining regulatory approval across major markets and demonstrating promising performance in infrastructure applications.

Looking forward, several significant trends will shape market evolution through 2035. Regulatory frameworks increasingly recognize self-healing materials as enabling sustainability by extending product lifecycles and reducing replacement frequencies. Environmental considerations are driving development of bio-based self-healing systems, with early commercial products demonstrating promising performance while reducing carbon footprints. Integration with sensor technologies and digital monitoring systems represents a transformative trend, creating "smart" self-healing materials that communicate damage status and healing progress.

Technical challenges remain in scaling production while maintaining performance consistency, but continuous improvements in manufacturing processes are steadily addressing these limitations. Cost premiums over conventional materials remain a barrier in price-sensitive applications, though lifecycle cost analyses increasingly demonstrate favorable economics when maintenance and replacement expenses are considered. As the technology matures, self-healing capabilities will increasingly be viewed as standard requirements rather than premium features across multiple industries, driving broader adoption beyond current high-value applications into consumer products, electronic devices, and general industrial use. This transition from specialty to mainstream material solution will define the market's evolution over the coming decade.

The Global Self-Healing Materials Market 2025-2035 provides insights into the rapidly evolving self-healing materials landscape, tracking growth trajectories, technological developments, and commercialization strategies through 2035. 

Key Report Contents include:

  • Market Analysis and Growth Projections
    • Market Size and Forecast: Detailed revenue projections from 2025-2035, with historical context from 2015
    • Segmentation by Material Type: Comprehensive breakdown across self-healing polymers, coatings, concrete, metals, ceramics, and composite materials
    • Segmentation by Healing Mechanism: Comparative analysis of microencapsulation, vascular systems, intrinsic self-healing, and shape memory technologies
    • Regional Market Distribution: Granular geographic assessment with regional adoption rates, growth drivers, and market development patterns
    • Technology/Application Matrix: Visual mapping of optimal technology solutions for specific industry challenges
  • Technology Analysis
    • Extrinsic Self-Healing Mechanisms: Comprehensive analysis of microencapsulated healing agents, vascular networks, reversible bonds, and external stimulation approaches
    • Intrinsic Self-Healing Systems: Detailed examination of reversible covalent bonds, ionomers, polymer networks, microscopic mobility, and supramolecular chemistry
    • Material-Specific Technologies: Specialized analysis of self-healing polymers, elastomers, hydrogels, concrete, ceramics, metals, and nanomaterial systems
    • Biomimetic Approaches: Assessment of nature-inspired self-healing mechanisms with commercialization potential
    • SWOT Analysis: Strategic evaluation of strengths, weaknesses, opportunities, and threats for major self-healing technology categories
  • Application Analysis by End-Use Market
    • Aerospace: Self-healing composites, thermal interface materials, and protective coatings
    • Automotive: Scratch-resistant finishes, self-healing glass, composites, and tire technologies
    • Electronics: Display technologies, flexible electronics, wearables, soft robotics, and sensor applications
    • Energy Storage: Battery components, solid electrolytes, fuel cell membranes, and solar technologies
    • Construction: Self-healing concrete, asphalt, protective coatings, and structural materials
    • Healthcare: Tissue engineering scaffolds, drug delivery systems, artificial skin, dental composites, and orthopaedic applications
    • Additional Sectors: Detailed coverage of paints/coatings, adhesives/elastomers, filtration membranes, textiles, military/defense, oil/gas, and marine applications
  • Commercialization Status and Strategic Insights
    • Technology Readiness Assessment: TRL evaluation framework applied to major self-healing technologies
    • Commercial Product Analysis: Comprehensive profiles of marketed products with performance metrics and market positioning
    • Intellectual Property Landscape: Patent analysis revealing innovation trends, strategic positioning, and IP concentration
    • Market Entry Barriers: Identification of technical, economic, and regulatory challenges with mitigation strategies
    • Technology Roadmap: Visual strategic pathway for self-healing material development through 2035
  • Competitive Landscape
  • Company Profiles: Detailed assessments of 40+ key players including technology portfolios, commercialization status, and strategic direction. Companies profiled include 3M, A2O Advanced Materials Inc., ABB, Acciona S.A., Adler Coatings, Advanced Soft Materials, Inc., Aizawa Concrete Corporation, Akzo Nobel N.V., Applied Thin Film, Inc., Arkema S.A., Basilisk, Battelle, CompPair Technologies Ltd., Covestro AG, Croda, DMAT, DS Smith, Dupont Teijin Films, Epion, Evonik Industries AG, Feynlab, Helicoid Industries, Henkel, Hyundai Motor Group, JP Concrete, Kansai Paint Company, Mimicrete, NATOCO Co., Ltd., and more, covering established multinational corporations, specialized material developers, and innovative startups across the value chain.
  • Future Outlook and Strategic Opportunities
    • Market Acceleration Factors: Identification of technical breakthroughs, policy developments, and market drivers that could accelerate adoption
    • Cross-Industry Convergence: Emerging opportunities at the intersection of self-healing materials with IoT, smart manufacturing, and circular economy initiatives
    • Sustainability Implications: Analysis of environmental benefits, lifecycle advantages, and alignment with ESG objectives

 

 

1             EXECUTIVE SUMMARY            15

  • 1.1        Market opportunity for self-healing materials          15
  • 1.1        Benefits of self-healing           16
  • 1.2        Types of healing by material formulation and format           17
  • 1.3        Trends in self-healing materials         18
  • 1.4        Commercialising self-healing products       19
    • 1.4.1    Construction materials           20
    • 1.4.2    Protective paints and coatings           21
    • 1.4.3    PVC cutting mats        22
  • 1.5        Biomimetics   22
  • 1.6        Global market revenues, historical and forecast to 2035 23
    • 1.6.1    Total     23
    • 1.6.2    By coating type              24
    • 1.6.3    By end use market      24
    • 1.6.4    By region           25
  • 1.7        SWOT analysis              27
  • 1.8        Technology roadmap 28

 

2             INTRODUCTION          31

  • 2.1        Self-healing mechanism and categorization             31
  • 2.2        Extrinsic self-healing 34
    • 2.2.1    Microencapsulated healing agents 35
    • 2.2.2    Vascular self-healing 36
    • 2.2.3    Reversible Bonds        37
    • 2.2.4    External Stimulation 38
    • 2.2.5    SWOT analysis              39
  • 2.3        Intrinsic self-healing 40
    • 2.3.1    Reversible Covalent Bonds  41
    • 2.3.2    Ionomer Healing          41
    • 2.3.3    Reversible Polymer Networks             42
    • 2.3.4    Microscopic Mobility 42
    • 2.3.5    Microcapsule Monomer Diffusion   43
    • 2.3.6    Sustainable intrinsic self-healing materials              44
    • 2.3.7    SWOT analysis              44
    • 2.3.8    Comparison of self-healing systems.            46
    • 2.3.9    Healing volume            46
  • 2.4        Shape memory assisted self-healing             47
    • 2.4.1    Overview           47
  • 2.5        Types of self-healing materials           48
    • 2.5.1    Self-healing coatings                50
    • 2.5.2    Anti-corrosion               50
    • 2.5.3    Scratch repair                51
    • 2.5.4    Self-healing polymers              51
      • 2.5.4.1 Thermally reversible reactions           53
      • 2.5.4.2 Photoreversible reactions     53
      • 2.5.4.3 Molecular interdiffusion         54
      • 2.5.4.4 Reversible bond formation   54
      • 2.5.4.5 Self-healing elastomers intrinsic and extrinsic        56
      • 2.5.4.6 FRPs    56
    • 2.5.5    Self-healing metals    56
    • 2.5.6    Self-healing fiber-reinforced polymer composites                57
    • 2.5.7    Metal matrix composites       58
    • 2.5.8    Self-Healing and Morphing Composites      58
    • 2.5.9    Self-healing ceramics and ceramic composites    59
    • 2.5.10 Self-healing nanomaterials  59
    • 2.5.11 Self-healing biomaterials       60
    • 2.5.12 3d printing of self-healing materials               60
    • 2.5.13 Self-healing under water         61
    • 2.5.14 Membranes    62
    • 2.5.15 Factors affecting self-healing             64

 

3             SELF-HEALING MATERIALS ANALYSIS           66

  • 3.1        Polyurethane clear coats       66
    • 3.1.1    Properties         66
    • 3.1.2    Products           66
    • 3.1.3    Markets              67
  • 3.2        Micro-/nanocapsules               68
    • 3.2.1    Properties         68
    • 3.2.2    Manufacturing              69
    • 3.2.3    Products           69
    • 3.2.4    Markets              72
  • 3.3        Microvascular networks         72
    • 3.3.1    Properties         72
    • 3.3.2    Markets              73
  • 3.4        Ionomers          73
    • 3.4.1    Properties         73
    • 3.4.2    Markets              74
  • 3.5        Click polymerization 74
    • 3.5.1    Properties         75
    • 3.5.2    Markets              75
  • 3.6        Supramolecular bonding and MSA  75
    • 3.6.1    Properties         75
  • 3.7        Vitrimers           76
    • 3.7.1    Properties         76
  • 3.8        Self-healing hydrogels             76
    • 3.8.1    Self-healing mechanisms     77
      • 3.8.1.1 Hydrogen Bonding      78
      • 3.8.1.2 Ionic Bonds     78
      • 3.8.1.3 Host-Guest Interactions         78
      • 3.8.1.4 Hydrophobic Bonds  78
      • 3.8.1.5 Imine Bonds   78
      • 3.8.1.6 Arylhydrazone bonds                78
      • 3.8.1.7 Diels-Alder Reaction 79
    • 3.8.2    Types and materials  79
      • 3.8.2.1 Natural Polymers        80
      • 3.8.2.2 Synthetic polymers    80
      • 3.8.2.3 Polyampholyte self-healing hydrogels          81
        • 3.8.2.3.1           Reversible polymer self-healing hydrogels 81
      • 3.8.2.4 Peptides            82
      • 3.8.2.5 Mussel-inspired proteins       82
      • 3.8.2.6 Bacterial cellulose      82
      • 3.8.2.7 Conductive polymers               83
      • 3.8.2.8 Zwitterionic polymers               84
      • 3.8.2.9 Nanomaterial self-healing hydrogels             84
        • 3.8.2.9.1           Graphene         84
        • 3.8.2.9.2           Carbon nanotubes     86
        • 3.8.2.9.3           Nanoclays        86
        • 3.8.2.9.4           Silicate nanoparticles              86
        • 3.8.2.9.5           Magnetic nanoparticles          86
    • 3.8.3    Markets and applications      86
  • 3.9        Carbon nanotubes     87
    • 3.9.1    Properties         87
  • 3.10     Graphene and other 2D materials    89
    • 3.10.1 Properties         89
  • 3.11     Self-healing proteins 91
    • 3.11.1 Properties         91
  • 3.12     Piezoelectric crystals               92
  • 3.13     Morphing host structures and shapeshifting materials     93

 

4             PATENT ANALYSIS       94

 

5             TECHNOLOGY READINESS LEVEL (TRL)      95

 

6             MARKETS FOR SELF-HEALING MATERIALS 99

  • 6.1        Aerospace        101
    • 6.1.1    Market drivers                101
    • 6.1.2    Applications   102
      • 6.1.2.1 Self-healing composites        102
      • 6.1.2.2 Self-healing thermal interface materials     102
    • 6.1.3    Commercial activity  103
    • 6.1.4    SWOT analysis              103
    • 6.1.5    Revenues          104
  • 6.2        Automotive      106
    • 6.2.1    Market drivers                106
    • 6.2.2    Applications   107
      • 6.2.2.1 Self-healing glass       107
      • 6.2.2.2 Self-healing coatings for scratch repair        107
      • 6.2.2.3 Self-healing composites        108
      • 6.2.2.4 Self-healing tires          108
    • 6.2.3    Commercial activity  109
    • 6.2.4    SWOT analysis              110
    • 6.2.5    Revenues          112
  • 6.3        Electronics      114
    • 6.3.1    Market drivers                114
    • 6.3.2    Applications   114
      • 6.3.2.1 Colorless polyimides (CPIs) 115
      • 6.3.2.2 Self-healing displays 116
      • 6.3.2.3 Self-healing consumer electronic device coatings               116
      • 6.3.2.4 Flexile insulators         117
      • 6.3.2.5 Self-healing flexible and stretchable wearables     118
      • 6.3.2.6 Self-healing soft robotics       118
      • 6.3.2.7 6G Reconfigurable Intelligent Surfaces        119
      • 6.3.2.8 Sensors             119
    • 6.3.3    Commercial activity  119
    • 6.3.4    SWOT analysis              120
    • 6.3.5    Revenues          121
  • 6.4        Energy Storage              122
    • 6.4.1    Overview           122
    • 6.4.2    Applications   122
      • 6.4.2.1 Self-healing materials for Lithium batteries               122
      • 6.4.2.2 Silicon anodes              122
      • 6.4.2.3 Electrolytes     123
      • 6.4.2.4 Self-healing flexible batteries              124
      • 6.4.2.5 Self-healing supercapacitors              124
      • 6.4.2.6 Fuel cell membranss 125
      • 6.4.2.7 Gas turbine coatings 125
      • 6.4.2.8 Wind energy    126
      • 6.4.2.9 Self-healing photovoltaics    126
    • 6.4.3    Commercial activity  127
    • 6.4.4    SWOT analysis              127
    • 6.4.5    Revenues          128
  • 6.5        Adhesives and Elastomers   130
    • 6.5.1    Market drivers                130
    • 6.5.2    Applications   130
      • 6.5.2.1 Self-healing elastomers          130
      • 6.5.2.2 VPTA vitrimer adhesive            132
    • 6.5.3    Commercial activity  132
    • 6.5.4    SWOT analysis              133
    • 6.5.5    Revenues          134
  • 6.6        Buildings and construction   136
    • 6.6.1    Overview           136
    • 6.6.2    Market drivers                136
    • 6.6.3    Applications   138
      • 6.6.3.1 Intrinsic with additives            138
      • 6.6.3.2 Bacteria with post treatment               139
      • 6.6.3.3 Enzymes           139
      • 6.6.3.4 Funghi 140
      • 6.6.3.5 Natural polymers        140
      • 6.6.3.6 Self-healing concrete                141
      • 6.6.3.7 Fibre concrete               143
      • 6.6.3.8 Self-healing road surfaces and asphalt       143
      • 6.6.3.9 Self-Healing structural ceramics      144
    • 6.6.4    Commercial activity  144
    • 6.6.5    SWOT analysis              145
    • 6.6.6    Revenues          146
  • 6.7        Paint and coatings      147
    • 6.7.1    Market drivers                148
    • 6.7.2    Applications   149
      • 6.7.2.1 Self-healing anti-corrosion coatings               149
      • 6.7.2.2 Anti-fouling coatings 149
      • 6.7.2.3 Self-healing polymer film and paint 150
      • 6.7.2.4 Self-healing scratch-resistant coatings        150
      • 6.7.2.5 Ice-phobic coatings   152
    • 6.7.3    Commercial activity  152
    • 6.7.4    SWOT analysis              152
    • 6.7.5    Revenues          153
  • 6.8        Healthcare       154
    • 6.8.1    Market drivers                155
    • 6.8.2    Applications   156
      • 6.8.2.1 Drug or cell delivery carriers 157
      • 6.8.2.2 Tissue Engineering     157
      • 6.8.2.3 Artificial muscle and cartilage            158
      • 6.8.2.4 Self-healing dental composites        159
      • 6.8.2.5 Self-healing orthopaedic implants  159
      • 6.8.2.6 Artificial human skin 159
      • 6.8.2.7 Strain biosensors        160
      • 6.8.2.8 Prosthetics and soft robotics              161
      • 6.8.2.9 Bone repair      162
      • 6.8.3    Commercial activity  162
      • 6.8.4    SWOT analysis              163
      • 6.8.5    Revenues          164
  • 6.9        Other markets               166
    • 6.9.1    Filtration            166
      • 6.9.1.1 Applications   166
        • 6.9.1.1.1           Self-healing materials for membrane separation   166
        • 6.9.1.1.2           Desalination membrane         167
        • 6.9.1.1.3           Kidney dialysis membrane    167
    • 6.9.2    Textiles               168
      • 6.9.2.1 Applications   168
        • 6.9.2.1.1           Self-healing fabrics    168
        • 6.9.2.1.2           Programmable Textiles            168
    • 6.9.3    Military               169
      • 6.9.3.1 Applications   169
        • 6.9.3.1.1           Self-healing aircraft   169
        • 6.9.3.1.2           Self-healing vehicles 169
    • 6.9.4    Oil and gas      170
      • 6.9.4.1 Applications   170
        • 6.9.4.1.1           Corrosion and other protection         171
        • 6.9.4.1.2           Self-healing metals    171
    • 6.9.5    Marine 171
      • 6.9.5.1 Applications   171
      • 6.9.5.2 Commercial activity  172
    • 6.9.6    Conductive inks           174
    • 6.9.7    Optical and photonic materials         175
    • 6.9.8    Ceramics          176
    • 6.9.9    Metamaterials               177

 

7             COMPANY PROFILES                177 (40 company profiles)

 

8             RESEARCH METHODOLOGY              201

  • 8.1        Report scope 201

 

9             REFERENCES 201

 

List of Tables

  • Table 1. Types of healing by material formulation and format.      17
  • Table 2. Trends in self-healing materials.    18
  • Table 3. Commercial self-healing products.             19
  • Table 4. The global market for self-healing materials 2015-2035 (Millions USD).             23
  • Table 4. The global market for self-healing materials 2015-2035, by coating type (Millions USD).        24
  • Table 5. The global market for self-healing materials 2015-2035 (Millions USD), by end use market. 24
  • Table 6. The global market for self-healing materials 2015-2035 (Millions USD), by region.      25
  • Table 7. Types of self-healing materials.      49
  • Table 8. Comparative properties of self-healing materials.             50
  • Table 9. Healing mechanism for different materials.           50
  • Table 10. Properties of self-healing polymers.         55
  • Table 11. Recent research in self-healing metals. 57
  • Table 12. Types of self-healing nanomaterials.       60
  • Table 13. Influencing factors and their effects on healing efficiency.        65
  • Table 104: Companies producing polyurethane clear coat products for self-healing.  67
  • Table 15. Self-healing natural polymers.      80
  • Table 16. Synthetic polymers.             81
  • Table 17. Components, preparation and properties of representative conductive polymer hydrogels.                84
  • Table 18. Properties of graphene.     85
  • Table 19. Applications of self-healing hydrogels.   87
  • Table 20. Properties of graphene.     90
  • Table 21. Technology Readiness Level (TRL) Examples.    96
  • Table 22. Markets and applications for self-healing materials.     99
  • Table 23. Self-healing materials and coatings markets and applications.             100
  • Table 24. Market drivers for self-healing materials in aerospace.                102
  • Table 25. Commercial activity in self-healing aerospace applications.  103
  • Table 26. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the aerospace sector, conservative and high estimates.           105
  • Table 27. Market drivers for self-healing materials in the automotive sector.      106
  • Table 28. Automotive self-healing tire products.    109
  • Table 29. Commercial activity in self-healing automotive applications. 109
  • Table 30. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the automotive sector, conservative and high estimates.         112
  • Table 31. Market drivers for self-healing materials in electronics.               114
  • Table 32. Commercial activity in self-healing energy applications.           119
  • Table 33. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the electronics sector, conservative and high estimates.         121
  • Table 34. Commercial activity in self-healing energy applications.           127
  • Table 35. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the energy sector, conservative and high estimates.    129
  • Table 36. Market drivers for self-healing materials in adhesives and elastomers.            130
  • Table 37. Types of self-healing elastomers.               131
  • Table 38. Commercial activity in self-healing elastomers.              132
  • Table 39. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the elastomers sector, conservative and high estimates.         135
  • Table 40. Market drivers for self-healing materials in buildings and construction.           136
  • Table 41. Types of self-healing concrete.     143
  • Table 42. Commercial activity in self-healing construction applications.             144
  • Table 43. The market for self-healing materials, polymers and coatings 2015-2035,, Millions USD, in the construction sector, conservative and high estimates.     147
  • Table 44. Commercial self-healing paints and coatings products.             148
  • Table 45. Market drivers for self-healing materials in paint and coatings.              148
  • Table 46. Commercial activity in self-healing paints and coatings applications.              152
  • Table 47. The market for self-healing materials and polymers in paints and coatings 2015-2035, Millions USD, in the construction sector, conservative and high estimates.           154
  • Table 48. Market drivers for self-healing materials in healthcare.               155
  • Table 49. Commercial activity in self-healing healthcare applications.  162
  • Table 50. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the healthcare sector, conservative and high estimates.          165
  • Table 51. Market drivers for self-healing materials in the oil and gas.      170
  • Table 52. Commercial activity in self-healing marine applications.          172

 

List of Figures

  • Figure 1. The global market for self-healing materials 2015-2035 (Millions USD).           22
  • Figure 2. The global market for self-healing materials 2015-2035, by coating type (Millions USD).      23
  • Figure 3. The global market for self-healing materials 2015-2035 (Millions USD), by end use market.                24
  • Figure 4. The global market for self-healing materials 2015-2035 (Millions USD), by region.    25
  • Figure 5. SWOT analysis for self-healing materials.              27
  • Figure 6. Self-healing technology roadmap to 2035.           28
  • Figure 7. Self-healing mechanism found in nature.              31
  • Figure 8. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.           33
  • Figure 9. Stages of self-healing mechanism.            33
  • Figure 10. Self-healing mechanism in vascular self-healing systems.     35
  • Figure 11. Extrinisc self-healing SWOT analysis.    38
  • Figure 12. Intrinisc self-healing SWOT analysis.     44
  • Figure 13. Comparison of self-healing systems.    45
  • Figure 14. Self-healing mechanism of polymers.   50
  • Figure 15. Applications of self-healing elastomers.             55
  • Figure 16. Illustration of BN precipitation on the creep cavity surface in stainless steel.             56
  • Figure 17. Schematic diagram of influencing factors on self-healing efficiency.               63
  • Figure 18. Schematic of the self-healing concept using microcapsules with a healing agent inside.  68
  • Figure 19. Companies Producing Self-Healing Microcapsules Products.              68
  • Figure 20. Healing process in a hydrogel.    77
  • Figure 21. Chemical and noncovalent interactions behind self-healable hydrogels.     78
  • Figure 22. (A) Wound self-healing process (B) Different forms of wound dressings.       82
  • Figure 23. Schematic of single-walled carbon nanotube. 87
  • Figure 24. Self-healing materials patent analysis 2010-2024.      94
  • Figure 25. TRL for self-healing materials, polymers and coatings.              96
  • Figure 26. Microspheres incorporating self-healing materials.     99
  • Figure 27. Flow of self-healing materials into the crack site.          99
  • Figure 28. SWOT analysis for self-healing materials in aerospace.            103
  • Figure 29. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the aerospace sector, conservative and high estimates.           104
  • Figure 30. Nissan Scratch Shield.     107
  • Figure 31. Lamborghini self-healing sports-car.     107
  • Figure 32. Self-healing tires. 108
  • Figure 33. SWOT analysis for self-healing materials in automotive.          110
  • Figure 34. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the automotive sector, conservative and high estimates.         111
  • Figure 35. Self-healing dielectric material for wearable electronics.         114
  • Figure 36. Self-healing patent schematic.  115
  • Figure 37. Self-healing coating on glass.     116
  • Figure 38. Self-healing glass developed at the University of Tokyo.            116
  • Figure 39. SWOT analysis for self-healing materials in electronics.           119
  • Figure 40. The market for self-healing materials, polymers and coatings 2015-2035,, Millions USD, in the electronics sector, conservative and high estimates.         120
  • Figure 41. BorgWarner Self-healing polymer capacitors.  123
  • Figure 42. Schematic of self-healing solar cell.       125
  • Figure 43. SWOT analysis for self-healing materials in energy.      127
  • Figure 44. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the energy sector, conservative and high estimates.    128
  • Figure 45. Self-healing rubber.            130
  • Figure 46. SeRM elastomers.              131
  • Figure 47. SWOT analysis for self-healing materials in elastomers.          133
  • Figure 48. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the elastomers sector, conservative and high estimates.         134
  • Figure 49. Self-healing bacteria crack filler for concrete.  141
  • Figure 50. Self-healing concrete.      142
  • Figure 51. SWOT analysis for self-healing materials in construction.       145
  • Figure 52. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the construction sector, conservative and high estimates.     146
  • Figure 53. SWOT analysis for self-healing materials in paints and coatings.        152
  • Figure 54. The market for self-healing materials and polymers in paints and coatings 2015-2035, Millions USD, in the construction sector, conservative and high estimates.        153
  • Figure 55. SWOT analysis for self-healing materials in healthcare.            163
  • Figure 56. The market for self-healing materials, polymers and coatings 2015-2035, Millions USD, in the healthcare sector, conservative and high estimates.          164
  • Figure 57. Self-healing fabrics.          167
  • Figure 58. Schematic of the nanocapsule-based self-healing coatings. 171
  • Figure 59. Sensicrete compound.    182
  • Figure 60.CompPair self-healing prepregs. 183

 

 

 

The Global Self-Healing Materials Market 2025-2035
The Global Self-Healing Materials Market 2025-2035
PDF download/by email.

The Global Self-Healing Materials Market 2025-2035
The Global Self-Healing Materials Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com