
cover
- Published: January 2025
- Pages: 676
- Tables: 249
- Figures: 156
The global Carbon Capture, Utilization, and Storage (CCUS) market has gained unprecedented momentum as nations and industries align with net-zero goals. is Growth driven by increasing climate change mitigation efforts and supportive government policies. Currently, the market is characterized by a mix of established industrial applications and emerging technologies, with significant expansion in both capture capacity and utilization pathways.
Point source carbon capture dominates the current market, primarily focused on industrial applications including power generation, cement production, and hydrogen manufacturing. Major industrial players are increasingly integrating CCUS technologies into their decarbonization strategies, while the emergence of direct air capture (DAC) technologies is opening new opportunities for carbon removal and utilization. The market is witnessing substantial investment growth, with venture capital funding reaching record levels and increased corporate commitments to carbon reduction. Government support through initiatives like the U.S. 45Q tax credits and the EU's Innovation Fund is accelerating commercial deployment. China's rapid advancement in CCUS technology development and deployment is reshaping the global market landscape. Current commercial CCUS facilities are predominantly focused on enhanced oil recovery (EOR) applications, but new utilization pathways are gaining traction.Start-ups are focusing on low-cost capture solvents, membrane technologies, and modular DAC systems. The voluntary carbon removal credits, exemplified by Microsoft’s $200 million purchase from Climeworks, is creating revenue streams, with blockchain-enabled tracking enhancing transparency. The conversion of CO2 into fuels, chemicals, and building materials represents growing market segments, supported by technological advances and increasing demand for low-carbon products.
Looking toward 2045, the CCUS market is expected to expand significantly. Projections indicate a substantial increase in global capture capacity, driven by both regulatory requirements and improving project economics. The integration of CCUS with hydrogen production (blue hydrogen) is expected to be a major growth driver, alongside expanding applications in hard-to-abate industrial sectors. Technological developments are expected to reduce capture costs while improving efficiency and scalability. Innovation in materials, processes, and integration strategies is likely to open new market opportunities, particularly in direct air capture and novel utilization pathways. The development of CCUS hubs and clusters is anticipated to solve infrastructure challenges and improve project economics through shared facilities.
Market growth is supported by strengthening carbon pricing mechanisms and increasingly stringent emissions regulations globally. The voluntary carbon market's expansion is creating additional revenue streams for CCUS projects, while corporate net-zero commitments are driving private sector investment. However, challenges remain in scaling up CCUS deployment, including high capital costs, infrastructure requirements, and technical barriers in some applications. The success of the market will depend on continued policy support, technology advancement, and the development of sustainable business models.
The Global Carbon Capture, Utilization and Storage (CCUS) Market 2025-2045 report provides a detailed analysis of the global Carbon Capture, Utilization and Storage (CCUS) sector, offering strategic insights into market trends, technology developments, and growth opportunities from 2025 to 2045. The study examines the entire CCUS value chain, from capture technologies to end-use applications and storage solutions. The report delivers in-depth analysis of CCUS technologies, market dynamics, and competitive landscapes across key segments including direct air capture (DAC), point source capture, utilization pathways, and storage solutions. It provides detailed market forecasts, technology assessments, and competitive analysis, supported by extensive primary research and industry expertise.
Contents include:
- Key Market Segments:
- Carbon Capture Technologies (post-combustion, pre-combustion, oxy-fuel)
- Utilization Pathways (fuels, chemicals, building materials, EOR)
- Storage Solutions (geological storage, mineralization)
- Direct Air Capture Technologies
- Transportation Infrastructure
- End-use Applications
- Comprehensive coverage of CCUS technologies including:
- Advanced capture materials and processes
- Novel separation technologies
- Utilization pathways and conversion processes
- Storage monitoring and verification systems
- Integration with renewable energy systems
- Artificial intelligence and digital solutions
- Detailed market metrics including:
- Global revenue projections (2025-2035)
- Regional market analysis
- Technology adoption rates
- Cost trends and projections
- Investment landscape
- Policy and regulatory frameworks
- Special Focus Areas including:
- Blue hydrogen production
- Cement sector applications
- Maritime carbon capture
- Direct air capture technologies
- Biological carbon removal
- Enhanced oil recovery
- Construction materials
- Strategic Insights including:
- Market opportunities and growth drivers
- Technology roadmaps
- Investment trends
- Regional market dynamics
- Policy impacts
- Project economics
- Applications and End Markets:
- Power generation
- Industrial processes
- Chemical production
- Building materials
- Fuel synthesis
- Agriculture and food production
- Environmental remediation
- Regulatory and Policy Analysis:
- Carbon pricing mechanisms
- Government initiatives
- Tax credits and incentives
- Environmental regulations
- International agreements
- Market mechanisms
- Project Analysis:
- Operational facilities
- Projects under development
- Cost analysis
- Performance metrics
- Success factors
- Case studies
- Market Drivers and Challenges:
- Analysis of over 300 companies across the CCUS value chain, including:
- Technology developers
- Project developers
- Industrial users
- Oil and gas companies
- Chemical manufacturers
- Service providers
Companies profiled include 1point8, 3R-BioPhosphate, 44.01, 8Rivers, Adaptavate, ADNOC, Aeroborn B.V., Aether Diamonds, Again, Air Company, Air Liquide S.A., Air Products and Chemicals Inc., Air Protein, Air Quality Solutions Worldwide DAC, Airca Process Technology, Aircela Inc, AirCapture LLC, Airex Energy, AirHive, Airovation Technologies, Algal Bio Co. Ltd., Algiecel ApS, Algenol, Andes Ag Inc., Aqualung Carbon Capture, Arborea, Arca, Arkeon Biotechnologies, Asahi Kasei, AspiraDAC Pty Ltd., Aspiring Materials, Atoco, Avantium N.V., Avnos Inc., Axens SA, Aymium, Azolla, BASF Group, Barton Blakeley Technologies Ltd., BC Biocarbon, Blue Planet Systems Corporation, BluSky Inc., BP PLC, Breathe Applied Sciences, Bright Renewables, Brilliant Planet, bse Methanol GmbH, C-Capture, C2CNT LLC, C4X Technologies Inc., Cambridge Carbon Capture Ltd., Capchar Ltd., Captura Corporation, Capture6, Carba, CarbiCrete, Carbfix, Carboclave, Carbo Culture, Carbon Blade, Carbon Blue, Carbon CANTONNE, Carbon Capture Inc., Carbon Capture Machine (UK), Carbon Centric AS, Carbon Clean Solutions Limited, Carbon Collect Limited, Carbon Engineering Ltd., Carbon Geocapture Corp, Carbon Infinity Limited, Carbon Limit, Carbon Neutral Fuels, Carbon Re, Carbon Recycling International, Carbon Reform Inc., Carbon Ridge Inc., Carbon Sink LLC, Carbon Upcycling Technologies, Carbon-Zero US LLC, Carbon8 Systems, CarbonBuilt, CarbonCure Technologies Inc., Carbonfex Oy, CarbonFree, Carbonfree Chemicals, Carbonade, Carbonaide Oy, Carbonaught Pty Ltd., CarbonMeta Research Ltd., Carbominer, CarbonOrO Products B.V., CarbonQuest, CarbonScape Ltd., CarbonStar Systems, Carbyon BV, Cella Mineral Storage, Cemvita Factory Inc., CERT Systems Inc., CFOAM Limited, Charm Industrial, Chevron Corporation, China Energy Investment Corporation (CHN Energy), Chiyoda Corporation, Climeworks, CNF Biofuel AS, CO2 Capsol, CO2CirculAir B.V., CO2Rail Company, Compact Carbon Capture AS (Baker Hughes), Concrete4Change, Coval Energy B.V., Covestro AG, C-Quester Inc., Cquestr8 Limited, CyanoCapture, D-CRBN, Decarbontek LLC, Deep Branch Biotechnology, Deep Sky, Denbury Inc., Dimensional Energy, Dioxide Materials, Dioxycle, Earth RepAIR, Ebb Carbon, Ecocera, EcoClosure LLC, ecoLocked GmbH, Econic Technologies Ltd., Eion Carbon, Electrochaea GmbH, Emerging Fuels Technology (EFT), Empower Materials Inc., enaDyne GmbH, Enerkem Inc., Entropy Inc., E-Quester, Equatic, Equinor ASA, Evonik Industries AG, Exomad Green, ExxonMobil, Fairbrics, Fervo Energy, Fluor Corporation, Fortera Corporation, Framergy Inc., FuelCell Energy Inc., Funga, GE Gas Power (General Electric), Giammarco Vetrocoke, Giner Inc., Global Algae Innovations, Global Thermostat LLC, Graphyte, Graviky Labs, GreenCap Solutions AS, Greeniron H2 AB, Greenlyte Carbon Technologies, Green Sequest, greenSand, Gulf Coast Sequestration, Hago Energetics, Haldor Topsoe, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holcene, Holcim Group, Holy Grail Inc., Honeywell, IHI Corporation, Immaterial Ltd., Ineratec GmbH, Infinitree LLC, Innovator Energy, InnoSepra LLC, Inplanet GmbH, InterEarth, ION Clean Energy Inc., Japan CCS Co. Ltd., Jupiter Oxygen Corporation, Kawasaki Heavy Industries Ltd., KC8 Capture Technologies, Krajete GmbH, LanzaJet Inc., Lanzatech, Lectrolyst LLC, Levidian Nanosystems, The Linde Group, Liquid Wind AB, Lithos Carbon, Living Carbon, Loam Bio, Low Carbon Korea and more.
1 EXECUTIVE SUMMARY 34
- 1.1 Main sources of carbon dioxide emissions 34
- 1.2 CO2 as a commodity 35
- 1.3 Meeting climate targets 38
- 1.4 Market drivers and trends 38
- 1.5 The current market and future outlook 39
- 1.6 CCUS Industry developments 2020-2025 40
- 1.7 CCUS investments 45
- 1.7.1 Venture Capital Funding 45
- 1.7.1.1 2010-2024 46
- 1.7.1.2 CCUS VC deals 2022-2025 47
- 1.7.1 Venture Capital Funding 45
- 1.8 Government CCUS initiatives 50
- 1.8.1 North America 50
- 1.8.2 Europe 51
- 1.8.3 Asia 52
- 1.8.3.1 Japan 52
- 1.8.3.2 Singapore 52
- 1.8.3.3 China 52
- 1.9 Market map 55
- 1.10 Commercial CCUS facilities and projects 58
- 1.10.1 Facilities 58
- 1.10.1.1 Operational 58
- 1.10.1.2 Under development/construction 61
- 1.10.1 Facilities 58
- 1.11 CCUS Value Chain 66
- 1.12 Key market barriers for CCUS 67
- 1.13 Carbon pricing 67
- 1.13.1 Compliance Carbon Pricing Mechanisms 69
- 1.13.2 Alternative to Carbon Pricing: 45Q Tax Credits 70
- 1.13.3 Business models 71
- 1.13.4 The European Union Emission Trading Scheme (EU ETS) 72
- 1.13.5 Carbon Pricing in the US 73
- 1.13.6 Carbon Pricing in China 74
- 1.13.7 Voluntary Carbon Markets 74
- 1.13.8 Challenges with Carbon Pricing 75
- 1.14 Global market forecasts 76
- 1.14.1 CCUS capture capacity forecast by end point 76
- 1.14.2 Capture capacity by region to 2045, Mtpa 77
- 1.14.3 Revenues 78
- 1.14.4 CCUS capacity forecast by capture type 78
- 1.14.5 Cost projections 2025-2045 79
2 INTRODUCTION 81
- 2.1 What is CCUS? 81
- 2.1.1 Carbon Capture 86
- 2.1.1.1 Source Characterization 86
- 2.1.1.2 Purification 86
- 2.1.1.3 CO2 capture technologies 87
- 2.1.2 Carbon Utilization 90
- 2.1.2.1 CO2 utilization pathways 91
- 2.1.3 Carbon storage 91
- 2.1.3.1 Passive storage 91
- 2.1.3.2 Enhanced oil recovery 92
- 2.1.1 Carbon Capture 86
- 2.2 Transporting CO2 93
- 2.2.1 Methods of CO2 transport 93
- 2.2.1.1 Pipeline 94
- 2.2.1.2 Ship 94
- 2.2.1.3 Road 95
- 2.2.1.4 Rail 95
- 2.2.2 Safety 95
- 2.2.1 Methods of CO2 transport 93
- 2.3 Costs 96
- 2.3.1 Cost of CO2 transport 97
- 2.4 Carbon credits 99
- 2.5 Life Cycle Assessment (LCA) of CCUS Technologies 100
- 2.6 Environmental Impact Assessment 102
- 2.7 Social acceptance and public perception 102
3 CARBON DIOXIDE CAPTURE 104
- 3.1 CO₂ capture technologies 104
- 3.2 >90% capture rate 106
- 3.3 99% capture rate 106
- 3.4 CO2 capture from point sources 108
- 3.4.1 Energy Availability and Costs 111
- 3.4.2 Power plants with CCUS 111
- 3.4.3 Transportation 112
- 3.4.4 Global point source CO2 capture capacities 113
- 3.4.5 By source 114
- 3.4.6 Blue hydrogen 115
- 3.4.6.1 Steam-methane reforming (SMR) 116
- 3.4.6.2 Autothermal reforming (ATR) 116
- 3.4.6.3 Partial oxidation (POX) 117
- 3.4.6.4 Sorption Enhanced Steam Methane Reforming (SE-SMR) 118
- 3.4.6.5 Pre-Combustion vs. Post-Combustion carbon capture 119
- 3.4.6.6 Blue hydrogen projects 120
- 3.4.6.7 Costs 120
- 3.4.6.8 Market players 121
- 3.4.7 Carbon capture in cement 122
- 3.4.7.1 CCUS Projects 123
- 3.4.7.2 Carbon capture technologies 124
- 3.4.7.3 Costs 125
- 3.4.7.4 Challenges 125
- 3.4.8 Maritime carbon capture 126
- 3.5 Main carbon capture processes 126
- 3.5.1 Materials 126
- 3.5.2 Post-combustion 128
- 3.5.2.1 Chemicals/Solvents 129
- 3.5.2.2 Amine-based post-combustion CO₂ absorption 131
- 3.5.2.3 Physical absorption solvents 132
- 3.5.3 Oxy-fuel combustion 134
- 3.5.3.1 Oxyfuel CCUS cement projects 135
- 3.5.3.2 Chemical Looping-Based Capture 136
- 3.5.4 Liquid or supercritical CO2: Allam-Fetvedt Cycle 137
- 3.5.5 Pre-combustion 138
- 3.6 Carbon separation technologies 139
- 3.6.1 Absorption capture 140
- 3.6.2 Adsorption capture 144
- 3.6.2.1 Solid sorbent-based CO₂ separation 145
- 3.6.2.2 Metal organic framework (MOF) adsorbents 147
- 3.6.2.3 Zeolite-based adsorbents 147
- 3.6.2.4 Solid amine-based adsorbents 147
- 3.6.2.5 Carbon-based adsorbents 148
- 3.6.2.6 Polymer-based adsorbents 149
- 3.6.2.7 Solid sorbents in pre-combustion 149
- 3.6.2.8 Sorption Enhanced Water Gas Shift (SEWGS) 150
- 3.6.2.9 Solid sorbents in post-combustion 151
- 3.6.3 Membranes 153
- 3.6.3.1 Membrane-based CO₂ separation 154
- 3.6.3.2 Post-combustion CO₂ capture 157
- 3.6.3.2.1 Facilitated transport membranes 157
- 3.6.3.3 Pre-combustion capture 158
- 3.6.4 Liquid or supercritical CO2 (Cryogenic) capture 159
- 3.6.4.1 Cryogenic CO₂ capture 159
- 3.6.5 Calcium Looping 161
- 3.6.5.1 Calix Advanced Calciner 161
- 3.6.6 Other technologies 162
- 3.6.6.1 LEILAC process 162
- 3.6.6.2 CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 163
- 3.6.6.3 CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 164
- 3.6.6.4 Microalgae Carbon Capture 164
- 3.6.7 Comparison of key separation technologies 166
- 3.6.8 Technology readiness level (TRL) of gas separation technologies 167
- 3.7 Opportunities and barriers 167
- 3.8 Costs of CO2 capture 168
- 3.9 CO2 capture capacity 170
- 3.10 Direct air capture (DAC) 172
- 3.10.1 Technology description 172
- 3.10.1.1 Sorbent-based CO2 Capture 172
- 3.10.1.2 Solvent-based CO2 Capture 172
- 3.10.1.3 DAC Solid Sorbent Swing Adsorption Processes 173
- 3.10.1.4 Electro-Swing Adsorption (ESA) of CO2 for DAC 173
- 3.10.1.5 Solid and liquid DAC 174
- 3.10.2 Advantages of DAC 175
- 3.10.3 Deployment 176
- 3.10.4 Point source carbon capture versus Direct Air Capture 177
- 3.10.5 Technologies 178
- 3.10.5.1 Solid sorbents 179
- 3.10.5.2 Liquid sorbents 181
- 3.10.5.3 Liquid solvents 182
- 3.10.5.4 Airflow equipment integration 182
- 3.10.5.5 Passive Direct Air Capture (PDAC) 182
- 3.10.5.6 Direct conversion 183
- 3.10.5.7 Co-product generation 183
- 3.10.5.8 Low Temperature DAC 183
- 3.10.5.9 Regeneration methods 183
- 3.10.6 Electricity and Heat Sources 184
- 3.10.7 Commercialization and plants 184
- 3.10.8 Metal-organic frameworks (MOFs) in DAC 185
- 3.10.9 DAC plants and projects-current and planned 185
- 3.10.10 Capacity forecasts 188
- 3.10.11 Costs 189
- 3.10.12 Market challenges for DAC 195
- 3.10.13 Market prospects for direct air capture 196
- 3.10.14 Players and production 198
- 3.10.15 Co2 utilization pathways 199
- 3.10.16 Markets for Direct Air Capture and Storage (DACCS) 201
- 3.10.16.1 Fuels 202
- 3.10.16.1.1 Overview 202
- 3.10.16.1.2 Production routes 204
- 3.10.16.1.3 Methanol 204
- 3.10.16.1.4 Algae based biofuels 205
- 3.10.16.1.5 CO₂-fuels from solar 206
- 3.10.16.1.6 Companies 208
- 3.10.16.1.7 Challenges 210
- 3.10.16.2 Chemicals, plastics and polymers 210
- 3.10.16.2.1 Overview 210
- 3.10.16.2.2 Scalability 211
- 3.10.16.2.3 Plastics and polymers 212
- 3.10.16.2.3.1 CO2 utilization products 213
- 3.10.16.2.4 Urea production 214
- 3.10.16.2.5 Inert gas in semiconductor manufacturing 214
- 3.10.16.2.6 Carbon nanotubes 214
- 3.10.16.2.7 Companies 214
- 3.10.16.3 Construction materials 216
- 3.10.16.3.1 Overview 216
- 3.10.16.3.2 CCUS technologies 217
- 3.10.16.3.3 Carbonated aggregates 219
- 3.10.16.3.4 Additives during mixing 221
- 3.10.16.3.5 Concrete curing 221
- 3.10.16.3.6 Costs 221
- 3.10.16.3.7 Companies 221
- 3.10.16.3.8 Challenges 223
- 3.10.16.4 CO2 Utilization in Biological Yield-Boosting 224
- 3.10.16.4.1 Overview 224
- 3.10.16.4.2 Applications 224
- 3.10.16.4.2.1 Greenhouses 224
- 3.10.16.4.2.2 Algae cultivation 224
- 3.10.16.4.2.3 Microbial conversion 224
- 3.10.16.4.3 Companies 226
- 3.10.16.5 Food and feed production 227
- 3.10.16.6 CO₂ Utilization in Enhanced Oil Recovery 227
- 3.10.16.6.1 Overview 227
- 3.10.16.6.1.1 Process 228
- 3.10.16.6.1.2 CO₂ sources 229
- 3.10.16.6.2 CO₂-EOR facilities and projects 229
- 3.10.16.6.1 Overview 227
- 3.10.16.1 Fuels 202
- 3.10.1 Technology description 172
- 3.11 Hybrid Capture Systems 231
- 3.12 Artificial Intelligence in Carbon Capture 231
- 3.13 Integration with Renewable Energy Systems 232
- 3.14 Mobile Carbon Capture Solutions 233
- 3.15 Carbon Capture Retrofitting 234
4 CARBON DIOXIDE REMOVAL 235
- 4.1 Conventional CDR on land 236
- 4.1.1 Wetland and peatland restoration 236
- 4.1.2 Cropland, grassland, and agroforestry 237
- 4.2 Technological CDR Solutions 237
- 4.3 Main CDR methods 238
- 4.4 Novel CDR methods 239
- 4.5 Technology Readiness Level (TRL): Carbon Dioxide Removal Methods 241
- 4.6 Carbon Credits 241
- 4.6.1 CO2 Utilization 242
- 4.6.2 Biochar and Agricultural Products 242
- 4.6.3 Renewable Energy Generation 242
- 4.6.4 Ecosystem Services 242
- 4.7 Types of Carbon Credits 243
- 4.7.1 Voluntary Carbon Credits 243
- 4.7.2 Compliance Carbon Credits 244
- 4.7.3 Corporate commitments 246
- 4.7.4 Increasing government support and regulations 246
- 4.7.5 Advancements in carbon offset project verification and monitoring 247
- 4.7.6 Potential for blockchain technology in carbon credit trading 247
- 4.7.7 Prices 248
- 4.7.8 Buying and Selling Carbon Credits 250
- 4.7.8.1 Carbon credit exchanges and trading platforms 250
- 4.7.8.2 Over-the-counter (OTC) transactions 251
- 4.7.8.3 Pricing mechanisms and factors affecting carbon credit prices 251
- 4.7.9 Certification 251
- 4.7.10 Challenges and risks 252
- 4.8 Value chain 252
- 4.9 Monitoring, reporting, and verification 253
- 4.10 Government policies 254
- 4.11 Bioenergy with Carbon Removal and Storage (BiCRS) 255
- 4.11.1 Advantages 255
- 4.11.2 Challenges 257
- 4.11.3 Costs 258
- 4.11.4 Feedstocks 259
- 4.12 BECCS 260
- 4.12.1 Technology overview 260
- 4.12.1.1 Point Source Capture Technologies for BECCS 262
- 4.12.1.2 Energy efficiency 262
- 4.12.1.3 Heat generation 263
- 4.12.1.4 Waste-to-Energy 263
- 4.12.1.5 Blue Hydrogen Production 263
- 4.12.2 Biomass conversion 264
- 4.12.3 CO₂ capture technologies 264
- 4.12.4 BECCS facilities 266
- 4.12.5 Cost analysis 267
- 4.12.6 BECCS carbon credits 268
- 4.12.7 Sustainability 268
- 4.12.8 Challenges 268
- 4.12.1 Technology overview 260
- 4.13 Enhanced Weathering 270
- 4.13.1 Overview 270
- 4.13.1.1 Role of enhanced weathering in carbon dioxide removal 271
- 4.13.1.2 CO₂ mineralization 271
- 4.13.2 Enhanced Weathering Processes and Materials 272
- 4.13.3 Enhanced Weathering Applications 272
- 4.13.4 Trends and Opportunities 273
- 4.13.5 Challenges and Risks 273
- 4.13.6 Cost analysis 274
- 4.13.7 SWOT analysis 274
- 4.13.1 Overview 270
- 4.14 Afforestation/Reforestation 275
- 4.14.1 Overview 275
- 4.14.2 Carbon dioxide removal methods 275
- 4.14.3 Projects 278
- 4.14.4 Remote sensing in A/R 278
- 4.14.5 Robotics 278
- 4.14.6 Trends and Opportunities 280
- 4.14.7 Challenges and Risks 281
- 4.14.8 SWOT analysis 281
- 4.15 Soil carbon sequestration (SCS) 282
- 4.15.1 Overview 282
- 4.15.2 Practices 283
- 4.15.3 Measuring and Verifying 284
- 4.15.4 Trends and Opportunities 285
- 4.15.5 Carbon credits 286
- 4.15.6 Challenges and Risks 287
- 4.15.7 SWOT analysis 287
- 4.16 Biochar 289
- 4.16.1 What is biochar? 289
- 4.16.2 Carbon sequestration 291
- 4.16.3 Properties of biochar 291
- 4.16.4 Feedstocks 294
- 4.16.5 Production processes 294
- 4.16.5.1 Sustainable production 295
- 4.16.5.2 Pyrolysis 296
- 4.16.5.2.1 Slow pyrolysis 296
- 4.16.5.2.2 Fast pyrolysis 297
- 4.16.5.3 Gasification 298
- 4.16.5.4 Hydrothermal carbonization (HTC) 298
- 4.16.5.5 Torrefaction 298
- 4.16.5.6 Equipment manufacturers 299
- 4.16.6 Biochar pricing 300
- 4.16.7 Biochar carbon credits 300
- 4.16.7.1 Overview 300
- 4.16.7.2 Removal and reduction credits 301
- 4.16.7.3 The advantage of biochar 301
- 4.16.7.4 Prices 301
- 4.16.7.5 Buyers of biochar credits 302
- 4.16.7.6 Competitive materials and technologies 302
- 4.16.8 Bio-oil based CDR 303
- 4.16.9 Biomass burial for CO₂ removal 304
- 4.16.10 Bio-based construction materials for CDR 305
- 4.16.11 SWOT analysis 306
- 4.17 Ocean-based CDR 307
- 4.17.1 Overview 307
- 4.17.2 Ocean pumps 308
- 4.17.3 CO₂ capture from seawater 309
- 4.17.4 Ocean fertilisation 309
- 4.17.5 Coastal blue carbon 310
- 4.17.6 Algal cultivation 312
- 4.17.7 Artificial upwelling 312
- 4.17.8 MRV for marine CDR 313
- 4.17.9 Ocean alkalinisation 314
- 4.17.10 Ocean alkalinity enhancement (OAE) 314
- 4.17.11 Electrochemical ocean alkalinity enhancement 315
- 4.17.12 Direct ocean capture technology 315
- 4.17.13 Artificial downwelling 316
- 4.17.14 Trends and Opportunities 317
- 4.17.15 Ocean-based carbon credits 317
- 4.17.16 Cost analysis 318
- 4.17.17 Challenges and Risks 318
- 4.17.18 SWOT analysis 319
5 CARBON DIOXIDE UTILIZATION 321
- 5.1 Overview 321
- 5.1.1 Current market status 321
- 5.2 Carbon utilization business models 326
- 5.2.1 Benefits of carbon utilization 327
- 5.2.2 Market challenges 329
- 5.3 Co2 utilization pathways 330
- 5.4 Conversion processes 332
- 5.4.1 Thermochemical 332
- 5.4.1.1 Process overview 332
- 5.4.1.2 Plasma-assisted CO2 conversion 334
- 5.4.2 Electrochemical conversion of CO2 335
- 5.4.2.1 Process overview 336
- 5.4.3 Photocatalytic and photothermal catalytic conversion of CO2 338
- 5.4.4 Catalytic conversion of CO2 338
- 5.4.5 Biological conversion of CO2 338
- 5.4.6 Copolymerization of CO2 341
- 5.4.7 Mineral carbonation 343
- 5.4.1 Thermochemical 332
- 5.5 CO2-Utilization in Fuels 346
- 5.5.1 Overview 346
- 5.5.2 Production routes 349
- 5.5.3 CO₂ -fuels in road vehicles 353
- 5.5.4 CO₂ -fuels in shipping 353
- 5.5.5 CO₂ -fuels in aviation 353
- 5.5.6 Costs of e-fuel 354
- 5.5.7 Power-to-methane 355
- 5.5.7.1 Thermocatalytic pathway to e-methane 355
- 5.5.7.2 Biological fermentation 356
- 5.5.7.3 Costs 356
- 5.5.8 Algae based biofuels 360
- 5.5.9 DAC for e-fuels 361
- 5.5.10 Syngas Production Options 362
- 5.5.11 CO₂-fuels from solar 363
- 5.5.12 Companies 365
- 5.5.13 Challenges 367
- 5.5.14 Global market forecasts 2025-2045 367
- 5.6 CO2-Utilization in Chemicals 368
- 5.6.1 Overview 368
- 5.6.2 Carbon nanostructures 368
- 5.6.3 Scalability 370
- 5.6.4 Pathways 371
- 5.6.4.1 Thermochemical 371
- 5.6.4.2 Electrochemical 373
- 5.6.4.2.1 Low-Temperature Electrochemical CO₂ Reduction 374
- 5.6.4.2.2 High-Temperature Solid Oxide Electrolyzers 374
- 5.6.4.2.3 Coupling H2 and Electrochemical CO₂ Reduction 375
- 5.6.4.3 Microbial conversion 376
- 5.6.4.4 Other 377
- 5.6.4.4.1 Photocatalytic 377
- 5.6.4.4.2 Plasma technology 378
- 5.6.5 Applications 378
- 5.6.5.1 Urea production 378
- 5.6.5.2 CO₂-derived polymers 378
- 5.6.5.2.1 Pathways 378
- 5.6.5.2.2 Polycarbonate from CO₂ 379
- 5.6.5.2.3 Methanol to olefins (polypropylene production) 380
- 5.6.5.2.4 Ethanol to polymers 380
- 5.6.5.3 Inert gas in semiconductor manufacturing 380
- 5.6.6 Companies 381
- 5.6.7 Global market forecasts 2025-2045 383
- 5.7 CO2-Utilization in Construction and Building Materials 384
- 5.7.1 Overview 384
- 5.7.2 Market drivers 384
- 5.7.3 Key CO₂ utilization technologies in construction 387
- 5.7.4 Carbonated aggregates 389
- 5.7.5 Additives during mixing 390
- 5.7.6 Concrete curing 392
- 5.7.7 Costs 392
- 5.7.8 Market trends and business models 392
- 5.7.9 Carbon credits 395
- 5.7.10 Companies 396
- 5.7.11 Challenges 397
- 5.7.12 Global market forecasts 398
- 5.8 CO2-Utilization in Biological Yield-Boosting 399
- 5.8.1 Overview 399
- 5.8.2 CO₂ utilization in biological processes 399
- 5.8.3 Applications 399
- 5.8.3.1 Greenhouses 399
- 5.8.3.1.1 CO₂ enrichment 399
- 5.8.3.2 Algae cultivation 400
- 5.8.3.2.1 CO₂-enhanced algae cultivation: open systems 400
- 5.8.3.2.2 CO₂-enhanced algae cultivation: closed systems 401
- 5.8.3.3 Microbial conversion 402
- 5.8.3.4 Food and feed production 403
- 5.8.3.1 Greenhouses 399
- 5.8.4 Companies 404
- 5.8.5 Global market forecasts 2025-2045 405
- 5.9 CO₂ Utilization in Enhanced Oil Recovery 406
- 5.9.1 Overview 406
- 5.9.1.1 Process 406
- 5.9.1.2 CO₂ sources 407
- 5.9.2 CO₂-EOR facilities and projects 407
- 5.9.3 Challenges 408
- 5.9.4 Global market forecasts 2025-2045 409
- 5.9.1 Overview 406
- 5.10 Enhanced mineralization 409
- 5.10.1 Advantages 409
- 5.10.2 In situ and ex-situ mineralization 410
- 5.10.3 Enhanced mineralization pathways 411
- 5.10.4 Challenges 411
- 5.11 Digital Solutions and IoT in Carbon Utilization 412
- 5.12 Blockchain Applications in Carbon Trading 413
- 5.13 Carbon Utilization in Data Centers 414
- 5.14 Integration with Smart City Infrastructure 414
- 5.15 Novel Applications 415
- 5.15.1 3D Printing with CO2-derived Materials 415
- 5.15.2 CO2 in Energy Storage 416
- 5.15.3 CO2 in Electronics Manufacturing 417
6 CARBON DIOXIDE STORAGE 418
- 6.1 Introduction 418
- 6.2 CO2 storage sites 420
- 6.2.1 Storage types for geologic CO2 storage 421
- 6.2.2 Oil and gas fields 422
- 6.2.3 Saline formations 423
- 6.2.4 Coal seams and shale 426
- 6.2.5 Basalts and ultra-mafic rocks 426
- 6.3 CO₂ leakage 427
- 6.4 Global CO2 storage capacity 428
- 6.5 CO₂ Storage Projects 433
- 6.6 CO₂ -EOR 435
- 6.6.1 Description 435
- 6.6.2 Injected CO₂ 435
- 6.6.3 CO₂ capture with CO₂ -EOR facilities 436
- 6.6.4 Companies 437
- 6.6.5 Economics 438
- 6.7 Costs 439
- 6.8 Challenges 440
- 6.9 Storage Monitoring Technologies 440
- 6.10 Underground Hydrogen Storage Synergies 441
- 6.11 Advanced Modelling and Simulation 441
- 6.12 Storage Site Selection Criteria 442
- 6.13 Risk Assessment and Management 443
7 CARBON DIOXIDE TRANSPORTATION 445
- 7.1 Introduction 445
- 7.2 CO₂ transportation methods and conditions 445
- 7.3 CO₂ transportation by pipeline 446
- 7.4 CO₂ transportation by ship 447
- 7.5 CO₂ transportation by rail and truck 448
- 7.6 Cost analysis of different methods 448
- 7.7 Smart Pipeline Networks 449
- 7.8 Transportation Hubs and Infrastructure 450
- 7.9 Safety Systems and Monitoring 450
- 7.10 Future Transportation Technologies 451
- 7.11 Companies 453
8 COMPANY PROFILES 455 (329 company profiles)
9 APPENDICES 664
- 9.1 Abbreviations 664
- 9.2 Research Methodology 664
- 9.3 Definition of Carbon Capture, Utilisation and Storage (CCUS) 665
- 9.4 Technology Readiness Level (TRL) 666
10 REFERENCES 668
List of Tables
- Table 1. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends. 38
- Table 2. Carbon capture, usage, and storage (CCUS) industry developments 2020-2025. 40
- Table 3. Global Investment in Carbon Capture Technologies (2010-2024) 46
- Table 4. CCUS VC deals 2022-2025. 47
- Table 5. CCUS government funding and investment-10 year outlook. 50
- Table 6. Demonstration and commercial CCUS facilities in China. 52
- Table 7. Global commercial CCUS facilities-in operation. 58
- Table 8. Global commercial CCUS facilities-under development/construction. 61
- Table 9. Key market barriers for CCUS. 67
- Table 10. Key compliance carbon pricing initiatives around the world. 69
- Table 11. CCUS business models: full chain, part chain, and hubs and clusters. 71
- Table 12. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2045. 77
- Table 13. Capture capacity by region to 2045, Mtpa. 77
- Table 14. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2045. 78
- Table 15. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2045. 78
- Table 16. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2045. 78
- Table 17. CCUS Cost Projections 2025-2045. 79
- Table 18. CO2 utilization and removal pathways 82
- Table 19. Approaches for capturing carbon dioxide (CO2) from point sources. 86
- Table 20. CO2 capture technologies. 87
- Table 21. Advantages and challenges of carbon capture technologies. 88
- Table 22. Overview of commercial materials and processes utilized in carbon capture. 88
- Table 23. Methods of CO2 transport. 94
- Table 24. Comparison of CO2 Transportation Methods. 96
- Table 25. Estimated capital costs for commercial-scale carbon capture. 96
- Table 26. Key Milestones in Carbon Market Development 99
- Table 27.Carbon Credit Prices by Market. 99
- Table 28. Carbon Credit Project Types. 100
- Table 29. Life Cycle Assessment of CCUS Technologies 101
- Table 30. Environmental Impact Assessment for CCUS Technologies. 102
- Table 31. Comparison of CO₂ capture technologies. 104
- Table 32. Typical conditions and performance for different capture technologies. 106
- Table 33. PSCC technologies. 108
- Table 34. Point source examples. 109
- Table 35. Comparison of point-source CO₂ capture systems 110
- Table 36. Blue hydrogen projects. 120
- Table 37. Commercial CO₂ capture systems for blue H2. 121
- Table 38. Market players in blue hydrogen. 121
- Table 39. CCUS Projects in the Cement Sector. 123
- Table 40. Carbon capture technologies in the cement sector. 124
- Table 41. Cost and technological status of carbon capture in the cement sector. 125
- Table 42. Assessment of carbon capture materials 127
- Table 43. Chemical solvents used in post-combustion. 129
- Table 44. Comparison of key chemical solvent-based systems. 130
- Table 45. Chemical absorption solvents used in current operational CCUS point-source projects. 131
- Table 46.Comparison of key physical absorption solvents. 132
- Table 47.Physical solvents used in current operational CCUS point-source projects. 132
- Table 48. Emerging solvents for carbon capture 133
- Table 49. Oxygen separation technologies for oxy-fuel combustion. 134
- Table 50. Large-scale oxyfuel CCUS cement projects. 135
- Table 51. Commercially available physical solvents for pre-combustion carbon capture. 139
- Table 52. Main capture processes and their separation technologies. 139
- Table 53. Absorption methods for CO2 capture overview. 140
- Table 54. Commercially available physical solvents used in CO2 absorption. 142
- Table 55. Adsorption methods for CO2 capture overview. 144
- Table 56. Solid sorbents explored for carbon capture. 146
- Table 57. Carbon-based adsorbents for CO₂ capture. 148
- Table 58. Polymer-based adsorbents. 149
- Table 59. Solid sorbents for post-combustion CO₂ capture. 151
- Table 60. Emerging Solid Sorbent Systems. 151
- Table 61. Membrane-based methods for CO2 capture overview. 153
- Table 62. Comparison of membrane materials for CCUS 155
- Table 63.Commercial status of membranes in carbon capture 156
- Table 64. Membranes for pre-combustion capture. 158
- Table 65. Status of cryogenic CO₂ capture technologies. 160
- Table 66. Benefits and drawbacks of microalgae carbon capture. 165
- Table 67. Comparison of main separation technologies. 166
- Table 68. Technology readiness level (TRL) of gas separation technologies 167
- Table 69. Opportunities and Barriers by sector. 167
- Table 70. DAC technologies. 172
- Table 71. Advantages and disadvantages of DAC. 175
- Table 72. Advantages of DAC as a CO2 removal strategy. 175
- Table 73. Potential for DAC removal versus other carbon removal methods. 176
- Table 74. Companies developing airflow equipment integration with DAC. 182
- Table 75. Companies developing Passive Direct Air Capture (PDAC) technologies. 182
- Table 76. Companies developing regeneration methods for DAC technologies. 183
- Table 77. DAC companies and technologies. 185
- Table 78. Global capacity of direct air capture facilities. 186
- Table 79. DAC technology developers and production. 186
- Table 80. DAC projects in development. 188
- Table 81. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2045, base case. 188
- Table 82. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2045, optimistic case. 189
- Table 83. Costs summary for DAC. 189
- Table 84. Typical cost contributions of the main components of a DACCS system. 191
- Table 85. Cost estimates of DAC. 194
- Table 86. Challenges for DAC technology. 195
- Table 87. DAC companies and technologies. 198
- Table 88. Example CO2 utilization pathways. 199
- Table 89. Markets for Direct Air Capture and Storage (DACCS). 201
- Table 90. Market overview for CO2 derived fuels. 202
- Table 91. Compnaies in Methanol Production from CO2. 205
- Table 92. Microalgae products and prices. 206
- Table 93. Main Solar-Driven CO2 Conversion Approaches. 207
- Table 94. Companies in CO2-derived fuel products. 208
- Table 95. Commodity chemicals and fuels manufactured from CO2. 211
- Table 96. CO2 utilization products developed by chemical and plastic producers. 213
- Table 97. Companies in CO2-derived chemicals products. 214
- Table 98. Carbon capture technologies and projects in the cement sector 217
- Table 99. Companies in CO2 derived building materials. 221
- Table 100. Market challenges for CO2 utilization in construction materials. 223
- Table 101. Companies in CO2 Utilization in Biological Yield-Boosting. 226
- Table 102. CO2 sequestering technologies and their use in food. 227
- Table 103. Applications of CCS in oil and gas production. 227
- Table 104. AI Applications in Carbon Capture. 232
- Table 105. Renewable Energy Integration in Carbon Capture. 233
- Table 106. Mobile Carbon Capture Applications. 233
- Table 107. Carbon Capture Retrofitting. 234
- Table 108.Market Drivers for Carbon Dioxide Removal (CDR). 235
- Table 109. CDR versus CCUS 236
- Table 110. Status and Potential of CDR Technologies. 237
- Table 111. Main CDR methods. 238
- Table 112. Novel CDR Methods 239
- Table 113.Carbon Dioxide Removal Technology Benchmarking 240
- Table 114. Comparison of voluntary and compliance carbon credits. 245
- Table 115. DACCS carbon credit revenue forecast (million US$), 2024-2045. 245
- Table 116. Examples of government support and regulations. 246
- Table 117. Carbon credit prices. 248
- Table 118. Carbon credit prices by company and technology. 249
- Table 119. Carbon credit market sizes. 249
- Table 120. Carbon Credit Exchanges and Trading Platforms. 250
- Table 121. Challenges and Risks. 252
- Table 122. CDR Value Chain. 252
- Table 123. Feedstocks for Bioenergy with Carbon Removal and Storage (BiCRS): 259
- Table 124. CO₂ capture technologies for BECCS. 264
- Table 125. Existing and planned capacity for sequestration of biogenic carbon. 266
- Table 126. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 266
- Table 127. Challenges of BECCS 269
- Table 128.Comparison of enhanced weathering materials 272
- Table 129. Enhanced Weathering Applications. 272
- Table 130. Trends and opportunities in enhanced weathering. 273
- Table 131. Challenges and risks in enhanced weathering. 273
- Table 132. Nature-based CDR approaches. 276
- Table 133. Comparison of A/R and BECCS Solutions. 277
- Table 134. Status of Forest Carbon Removal Projects. 278
- Table 135. Companies in robotics in afforestation/reforestation. 279
- Table 136. Comparison of A/R and BECCS. 279
- Table 137. Trends and Opportunities in afforestation/reforestation. 280
- Table 138. Challenges and risks in afforestation/reforestation. 281
- Table 139. Soil carbon sequestration practices. 283
- Table 140. Soil sampling and analysis methods. 284
- Table 141. Remote sensing and modeling techniques. 284
- Table 142. Carbon credit protocols and standards. 285
- Table 143. Trends and opportunities in soil carbon sequestration (SCS). 285
- Table 144. Key aspects of soil carbon credits. 286
- Table 145. Challenges and Risks in SCS. 287
- Table 146. Summary of key properties of biochar. 292
- Table 147. Biochar physicochemical and morphological properties 292
- Table 148. Biochar feedstocks-source, carbon content, and characteristics. 294
- Table 149. Biochar production technologies, description, advantages and disadvantages. 295
- Table 150. Comparison of slow and fast pyrolysis for biomass. 297
- Table 151. Comparison of thermochemical processes for biochar production. 299
- Table 152. Biochar production equipment manufacturers. 299
- Table 153. Competitive materials and technologies that can also earn carbon credits. 302
- Table 154. Bio-oil-based CDR pros and cons. 303
- Table 155. Ocean-based CDR methods. 307
- Table 156. Benchmarking of ocean-based CDR methods: 309
- Table 157.Ocean-based CDR: biotic methods. 310
- Table 158. Technology in direct ocean capture. 316
- Table 159. Future direct ocean capture technologies. 316
- Table 160. Trends and opportunities in ocean-based CDR. 317
- Table 161. Challenges and risks in ocean-based CDR. 318
- Table 162. Carbon utilization revenue forecast by product (US$). 324
- Table 163. Carbon utilization business models. 326
- Table 164. CO2 utilization and removal pathways. 327
- Table 165. Market challenges for CO2 utilization. 329
- Table 166. Example CO2 utilization pathways. 330
- Table 167. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages. 332
- Table 168. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages. 336
- Table 169. CO2 derived products via biological conversion-applications, advantages and disadvantages. 340
- Table 170. Companies developing and producing CO2-based polymers. 342
- Table 171. Companies developing mineral carbonation technologies. 344
- Table 172. Comparison of emerging CO₂ utilization applications. 345
- Table 173. Main routes to CO₂-fuels. 347
- Table 174. Market overview for CO2 derived fuels. 347
- Table 175. Main routes to CO₂ -fuels 350
- Table 176.Comparison of e-fuels to fossil and biofuels. 351
- Table 177. Existing and future CO₂-derived synfuels (kerosene, diesel, and gasoline) projects.. : 352
- Table 178. CO2-Derived Methane Projects. 355
- Table 179. Power-to-Methane projects worldwide. 356
- Table 180. Power-to-Methane projects. 358
- Table 181. Microalgae products and prices. 361
- Table 182. Syngas Production Options for E-fuels. 362
- Table 183. Main Solar-Driven CO2 Conversion Approaches. 364
- Table 184. Companies in CO2-derived fuel products. 365
- Table 185. CO₂ utilization forecast for fuels by fuel type (million tonnes of CO₂/year), 2025-2045. 367
- Table 186. Global revenue forecast for CO₂-derived fuels by fuel type (million US$), 2025-2045. 367
- Table 187. Commodity chemicals and fuels manufactured from CO2. 371
- Table 188.CO₂-derived Chemicals: Thermochemical Pathways. 371
- Table 189. Thermochemical Methods: CO₂-derived Methanol. 372
- Table 190. CO₂-derived Methanol Projects. 372
- Table 191. CO₂-Derived Methanol: Economic and Market Analysis (Next 5-10 Years). 373
- Table 192. Electrochemical CO₂ Reduction Technologies. 373
- Table 193. Comparison of RWGS and SOEC Co-electrolysis Routes. 374
- Table 194. Cost Comparison of CO₂ Electrochemical Technologies. 375
- Table 195. Technology Readiness Level (TRL): CO₂U Chemicals. 381
- Table 196. Companies in CO2-derived chemicals products. 381
- Table 197. CO₂ utilization forecast in chemicals by end-use (million tonnes of CO₂/year), 2025-2045. 383
- Table 198. Global revenue forecast for CO₂-derived chemicals by end-use (million US$), 2025-2045. 383
- Table 199. Carbon capture technologies and projects in the cement sector 387
- Table 200. Prefabricated versus ready-mixed concrete markets . 390
- Table 201. CO₂ utilization in concrete curing or mixing. 391
- Table 202. CO₂ utilization business models in building materials. 393
- Table 203. Companies in CO2 derived building materials. 396
- Table 204. Market challenges for CO2 utilization in construction materials. 397
- Table 205. CO₂ utilization forecast in building materials by end-use (million tonnes of CO₂/year), 2025-2045. 398
- Table 206. Global revenue forecast for CO₂-derived building materials by product (million US$), 2025-2045. 398
- Table 207. Enrichment Technology. 399
- Table 208. Food and Feed Production from CO₂. 404
- Table 209. Companies in CO2 Utilization in Biological Yield-Boosting. 404
- Table 210. CO₂ utilization forecast in biological yield-boosting by end-use (million tonnes of CO₂ per year), 2025-2045. 405
- Table 211. Global revenue forecast for CO₂ use in biological yield-boosting by end-use (million US$), 2025-2045. 405
- Table 212. Applications of CCS in oil and gas production. 406
- Table 213. CO₂ utilization forecast in enhanced oil recovery (million tonnes of CO₂/year), 2025-2045 409
- Table 214. Global revenue forecast for CO₂-enhanced oil recovery (billion US$), 2025-2045. 409
- Table 215. CO2 EOR/Storage Challenges. 412
- Table 216. Digital and IoT Applications in Carbon Utilization. 412
- Table 217. Blockchain Applications in Carbon Trading. 413
- Table 218. Carbon Utilization Strategies in Data Centers. 414
- Table 219. CCU Integration in Smart City Infrastructure. 415
- Table 220. CO2-derived Materials in 3D Printing. 416
- Table 221. CO2 Applications in Energy Storage. 417
- Table 222. CO2 Applications in Electronics Manufacturing. 417
- Table 223. Storage and utilization of CO2. 418
- Table 224. Mechanisms of subsurface CO₂ trapping. 420
- Table 225. Global depleted reservoir storage projects. 421
- Table 226. Global CO2 ECBM storage projects. 422
- Table 227. CO2 EOR/storage projects. 422
- Table 228. Global storage sites-saline aquifer projects. 424
- Table 229. Global storage capacity estimates, by region. 429
- Table 230. MRV Technologies and Costs in CO₂ Storage. 431
- Table 231. Carbon storage challenges. 432
- Table 232. Status of CO₂ Storage Projects. 433
- Table 233. Types of CO₂ -EOR designs. 436
- Table 234. CO₂ capture with CO₂ -EOR facilities. 436
- Table 235. CO₂ -EOR companies. 437
- Table 236. Carbon Capture Storage Monitoring Technologies. 441
- Table 237. Storage Site Selection Criteria. 443
- Table 238. Phases of CO₂ for transportation. 445
- Table 239. CO₂ transportation methods and conditions. 445
- Table 240. Status of CO₂ transportation methods in CCS projects. 446
- Table 241. CO₂ pipelines Technical challenges. 446
- Table 242. Cost comparison of CO₂ transportation methods 448
- Table 243. Components of Smart Pipeline Networks. 449
- Table 244. Components of CO2 Transportation Hubs. 450
- Table 245. CO2 Pipeline Safety Systems and Monitoring. 451
- Table 246. Emerging CO2 Transportation Technologies. 452
- Table 247. CO₂ transport operators. 453
- Table 248. List of abbreviations. 664
- Table 249. Technology Readiness Level (TRL) Examples. 666
List of Figures
- Figure 1. Carbon emissions by sector. 34
- Figure 2. Overview of CCUS market 35
- Figure 3. CCUS business model. 37
- Figure 4. Pathways for CO2 use. 37
- Figure 5. Regional capacity share 2025-2035. 40
- Figure 6. Global investment in carbon capture 2010-2024, millions USD. 47
- Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 57
- Figure 8. CCS deployment projects, historical and to 2035. 58
- Figure 9. Existing and planned CCS projects. 66
- Figure 10. CCUS Value Chain. 67
- Figure 11. Schematic of CCUS process. 81
- Figure 12. Pathways for CO2 utilization and removal. 82
- Figure 13. A pre-combustion capture system. 87
- Figure 14. Carbon dioxide utilization and removal cycle. 90
- Figure 15. Various pathways for CO2 utilization. 91
- Figure 16. Example of underground carbon dioxide storage. 92
- Figure 17. Transport of CCS technologies. 93
- Figure 18. Railroad car for liquid CO₂ transport 95
- Figure 19. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector. 97
- Figure 20. Cost of CO2 transported at different flowrates 98
- Figure 21. Cost estimates for long-distance CO2 transport. 99
- Figure 22. CO2 capture and separation technology. 104
- Figure 23. Global capacity of point-source carbon capture and storage facilities. 113
- Figure 24. Global carbon capture capacity by CO2 source, 2023. 114
- Figure 25. Global carbon capture capacity by CO2 source, 2045. 115
- Figure 26. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS). 116
- Figure 27. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant. 117
- Figure 28. POX process flow diagram. 118
- Figure 29. Process flow diagram for a typical SE-SMR. 119
- Figure 30. Post-combustion carbon capture process. 128
- Figure 31. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 129
- Figure 32. Oxy-combustion carbon capture process. 135
- Figure 33. Process schematic of chemical looping. 137
- Figure 34. Liquid or supercritical CO2 carbon capture process. 138
- Figure 35. Pre-combustion carbon capture process. 138
- Figure 36. Amine-based absorption technology. 142
- Figure 37. Pressure swing absorption technology. 146
- Figure 38. Membrane separation technology. 154
- Figure 39. Liquid or supercritical CO2 (cryogenic) distillation. 159
- Figure 40. Cryocap™ process. 161
- Figure 41. Calix advanced calcination reactor. 162
- Figure 42. LEILAC process. 163
- Figure 43. Fuel Cell CO2 Capture diagram. 164
- Figure 44. Microalgal carbon capture. 165
- Figure 45. Cost of carbon capture. 169
- Figure 46. CO2 capture capacity to 2030, MtCO2. 170
- Figure 47. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030. 171
- Figure 48. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 174
- Figure 49. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 175
- Figure 50. DAC technologies. 178
- Figure 51. Schematic of Climeworks DAC system. 179
- Figure 52. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 180
- Figure 53. Flow diagram for solid sorbent DAC. 180
- Figure 54. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 181
- Figure 55. Schematic of costs of DAC technologies. 192
- Figure 56. DAC cost breakdown and comparison. 193
- Figure 57. Operating costs of generic liquid and solid-based DAC systems. 195
- Figure 58. Co2 utilization pathways and products. 201
- Figure 59. Conversion route for CO2-derived fuels and chemical intermediates. 203
- Figure 60. Conversion pathways for CO2-derived methane, methanol and diesel. 204
- Figure 61. CO2 feedstock for the production of e-methanol. 204
- Figure 62. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 207
- Figure 63. Audi synthetic fuels. 208
- Figure 64. Conversion of CO2 into chemicals and fuels via different pathways. 211
- Figure 65. Conversion pathways for CO2-derived polymeric materials 212
- Figure 66. Conversion pathway for CO2-derived building materials. 216
- Figure 67. Schematic of CCUS in cement sector. 217
- Figure 68. Carbon8 Systems’ ACT process. 220
- Figure 69. CO2 utilization in the Carbon Cure process. 220
- Figure 70. Algal cultivation in the desert. 224
- Figure 71. Example pathways for products from cyanobacteria. 225
- Figure 72. Typical Flow Diagram for CO2 EOR. 228
- Figure 73. Large CO2-EOR projects in different project stages by industry. 230
- Figure 74. Bioenergy with carbon capture and storage (BECCS) process. 261
- Figure 75. SWOT analysis: enhanced weathering. 275
- Figure 76. SWOT analysis: afforestation/reforestation. 282
- Figure 77. SWOT analysis: SCS. 288
- Figure 78. Schematic of biochar production. 289
- Figure 79. Biochars from different sources, and by pyrolyzation at different temperatures. 290
- Figure 80. Compressed biochar. 293
- Figure 81. Biochar production diagram. 295
- Figure 82. Pyrolysis process and by-products in agriculture. 297
- Figure 83. SWOT analysis: Biochar for CDR. 306
- Figure 84. SWOT analysis: ocean-based CDR. 320
- Figure 85. CO2 non-conversion and conversion technology, advantages and disadvantages. 321
- Figure 86. Applications for CO2. 323
- Figure 87. Cost to capture one metric ton of carbon, by sector. 324
- Figure 88. Life cycle of CO2-derived products and services. 329
- Figure 89. Co2 utilization pathways and products. 331
- Figure 90. Plasma technology configurations and their advantages and disadvantages for CO2 conversion. 335
- Figure 91. Electrochemical CO₂ reduction products. 336
- Figure 92. LanzaTech gas-fermentation process. 339
- Figure 93. Schematic of biological CO2 conversion into e-fuels. 340
- Figure 94. Econic catalyst systems. 342
- Figure 95. Mineral carbonation processes. 344
- Figure 96. Conversion route for CO2-derived fuels and chemical intermediates. 348
- Figure 97. Conversion pathways for CO2-derived methane, methanol and diesel. 349
- Figure 98. SWOT analysis: e-fuels. 354
- Figure 99. CO2 feedstock for the production of e-methanol. 360
- Figure 100. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 364
- Figure 101. Audi synthetic fuels. 365
- Figure 102. Conversion of CO2 into chemicals and fuels via different pathways. 370
- Figure 103. Conversion pathways for CO2-derived polymeric materials 379
- Figure 104. Conversion pathway for CO2-derived building materials. 384
- Figure 105. Schematic of CCUS in cement sector. 385
- Figure 106. Carbon8 Systems’ ACT process. 389
- Figure 107. CO2 utilization in the Carbon Cure process. 390
- Figure 108. Algal cultivation in the desert. 400
- Figure 109. Example pathways for products from cyanobacteria. 403
- Figure 110. Typical Flow Diagram for CO2 EOR. 407
- Figure 111. Large CO2-EOR projects in different project stages by industry. 408
- Figure 112. Carbon mineralization pathways. 411
- Figure 113. CO2 Storage Overview - Site Options 421
- Figure 114. CO2 injection into a saline formation while producing brine for beneficial use. 424
- Figure 115. Subsurface storage cost estimation. 439
- Figure 116. Air Products production process. 460
- Figure 117. ALGIECEL PhotoBioReactor. 466
- Figure 118. Schematic of carbon capture solar project. 470
- Figure 119. Aspiring Materials method. 471
- Figure 120. Aymium’s Biocarbon production. 474
- Figure 121. Capchar prototype pyrolysis kiln. 487
- Figure 122. Carbonminer technology. 493
- Figure 123. Carbon Blade system. 498
- Figure 124. CarbonCure Technology. 504
- Figure 125. Direct Air Capture Process. 506
- Figure 126. CRI process. 509
- Figure 127. PCCSD Project in China. 522
- Figure 128. Orca facility. 523
- Figure 129. Process flow scheme of Compact Carbon Capture Plant. 527
- Figure 130. Colyser process. 528
- Figure 131. ECFORM electrolysis reactor schematic. 535
- Figure 132. Dioxycle modular electrolyzer. 536
- Figure 133. Fuel Cell Carbon Capture. 553
- Figure 134. Topsoe's SynCORTM autothermal reforming technology. 561
- Figure 135. Heirloom DAC facilities. 563
- Figure 136. Carbon Capture balloon. 564
- Figure 137. Holy Grail DAC system. 567
- Figure 138. INERATEC unit. 572
- Figure 139. Infinitree swing method. 573
- Figure 140. Audi/Krajete unit. 578
- Figure 141. Made of Air's HexChar panels. 588
- Figure 142. Mosaic Materials MOFs. 596
- Figure 143. Neustark modular plant. 599
- Figure 144. OCOchem’s Carbon Flux Electrolyzer. 607
- Figure 145. ZerCaL™ process. 609
- Figure 146. CCS project at Arthit offshore gas field. 619
- Figure 147. RepAir technology. 623
- Figure 148. Aker (SLB Capturi) carbon capture system. 635
- Figure 149. Soletair Power unit. 637
- Figure 150. Sunfire process for Blue Crude production. 643
- Figure 151. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 646
- Figure 152. Takavator. 648
- Figure 153. O12 Reactor. 653
- Figure 154. Sunglasses with lenses made from CO2-derived materials. 653
- Figure 155. CO2 made car part. 653
- Figure 156. Molecular sieving membrane. 656
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com