The Global Advanced (Chemical) Recycling Market 2026-2040

0

cover

cover

  • Published: October 2025
  • Pages: 455
  • Tables: 122
  • Figures: 57

 

The advanced chemical recycling market represents a transformative approach to plastic waste management, converting end-of-life polymers back into their molecular building blocks or high-value chemical feedstocks. Unlike traditional mechanical recycling, which faces limitations with contaminated, multi-layer, or degraded plastics, chemical recycling technologies can process complex waste streams and produce virgin-quality materials suitable for demanding applications including food packaging, medical devices, and automotive components. The market is experiencing rapid expansion, with global chemical recycling capacity growing at compound annual growth rates exceeding 25%. This acceleration is driven by multiple converging factors: stringent regulatory frameworks like the European Union's Circular Economy Action Plan requiring increased recycled content, corporate sustainability commitments from major brand owners including Unilever, Nestlé, and Procter & Gamble, and the fundamental need for more sophisticated recycling solutions capable of handling mixed plastic waste fractions that conventional technologies cannot process. The transition from linear to circular economy models has aligned economic and environmental incentives, with financial institutions mobilizing over $10 billion in specialized capital for circular plastic initiatives.

The market encompasses four primary technology categories, each with distinct advantages and applications. Pyrolysis, operating at temperatures between 370-550°C, thermally decomposes polymers into pyrolysis oils, gases, and char, handling mixed plastic streams with relatively simple technology. Commercial facilities now operate at scales processing 100,000-500,000 tons annually, with companies like Brightmark, Plastic Energy, and Agilyx demonstrating viable integrated value chains.

Gasification, employing higher temperatures of 700-1,200°C, converts waste into synthesis gas (syngas) comprising hydrogen and carbon monoxide, which can be transformed into numerous chemical products or fuels. While more complex than pyrolysis, gasification offers exceptional feedstock versatility and multiple product pathways, with leading chemical manufacturers including BASF, Dow, and SABIC integrating plastic waste-derived feedstocks into existing steam cracking operations.

Solvent-based technologies, including dissolution and depolymerization processes, operate at lower temperatures (80-200°C) and preserve polymer structures, achieving yields exceeding 95% for certain materials. These methods demonstrate particular effectiveness for polyethylene terephthalate (PET), polyurethanes, and polyamides, producing monomers meeting virgin-grade specifications. Companies like Carbios and Loop Industries have achieved commercial-scale operations, with facilities processing 5,000-80,000 tons annually of difficult-to-recycle materials including textiles and multilayer packaging.

Depolymerization specifically targets condensation polymers like PET, nylon, and polycarbonate, breaking chemical bonds to recover original monomers through processes including hydrolysis, glycolysis, and methanolysis. This approach enables true closed-loop recycling, with recovered materials directly reintegrated into manufacturing without quality degradation.

Advanced chemical recycling serves diverse end markets across packaging, automotive, construction, electronics, and textiles. Food-grade packaging represents a critical application, with chemically recycled polymers meeting stringent safety requirements that mechanical recycling often cannot achieve. Major brands have launched products incorporating chemically recycled content, including Unilever's Magnum ice cream tubs, Mars pet food packaging, and Nestlé beverage containers. The automotive sector increasingly specifies chemically recycled materials for under-hood components and interior applications where performance requirements justify premium pricing. Electronics manufacturers utilize recovered engineering plastics for housings and structural components, while textile companies employ depolymerized polyester for apparel and home furnishings.

Despite robust growth, the industry faces significant barriers including high initial capital costs ranging from $50-200 million for commercial-scale facilities, feedstock quality variability, and evolving regulatory frameworks. Energy requirements, particularly for pyrolysis and gasification, necessitate careful process optimization and renewable energy integration to achieve favorable carbon footprints. The market trajectory remains strongly positive, with capacity expansions, technological improvements, and supportive policies creating reinforcing feedback loops. As circular economy principles become mainstream and design-for-recyclability standards proliferate, advanced chemical recycling will transition from alternative technology to essential infrastructure within the global materials economy, fundamentally transforming how society values and manages plastic resources.

The Global Advanced (Chemical) Recycling Market 2026-2040 delivers comprehensive analysis of the rapidly expanding chemical recycling industry, providing critical intelligence for stakeholders navigating the transition from linear to circular plastics economy. This definitive 450-page market intelligence report examines advanced recycling technologies transforming plastic waste management, including pyrolysis, gasification, solvent-based processes, and depolymerization systems projected to achieve market revenues exceeding $15 billion by 2040.

Advanced chemical recycling technologies are revolutionizing waste plastics management by converting end-of-life polymers into virgin-quality feedstocks, monomers, and chemical intermediates. Unlike mechanical recycling limited by contamination and degradation, chemical recycling processes handle mixed plastic waste streams, multilayer packaging, and contaminated materials, producing food-grade packaging, automotive components, and high-performance materials. This comprehensive market report analyzes technology readiness levels, commercial deployments, capacity expansions, and competitive landscape across thermal processes (pyrolysis and gasification), solvent-based technologies (dissolution and depolymerization), and emerging innovations including enzymatic recycling and plasma-assisted systems.

Market drivers propelling industry growth include stringent Extended Producer Responsibility (EPR) regulations, recycled content mandates in Europe, North America, and Asia, corporate sustainability commitments from Fortune 500 brands, and $10+ billion in circular economy investment. The European Union's Circular Economy Action Plan targeting 50% plastic packaging recycling by 2030, alongside carbon pricing mechanisms creating economic incentives for recycled materials, establishes regulatory frameworks accelerating commercial deployments. Major petrochemical manufacturers including BASF, Dow, SABIC, Shell, and TotalEnergies are integrating chemical recycling feedstocks into existing production infrastructure, validating technology scalability and market viability.

This strategic market intelligence report delivers actionable insights through detailed technology assessments, capacity forecasts, competitive benchmarking, and end-market analysis across packaging, automotive, construction, electronics, and textiles sectors. Comprehensive regional analysis examines Europe, North America, Asia-Pacific, South America, Africa, and Oceania, with polymer-specific demand forecasts for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyamides, and specialty polymers through 2040.

Report contents include:

  • Global market size and revenue projections by technology type (pyrolysis, gasification, dissolution, depolymerization)
  • Revenue forecasts by end-use application (packaging, automotive, construction, electronics, textiles)
  • Regional market analysis: Europe, North America, Asia-Pacific, South America, Africa, Oceania
  • Polymer demand segmentation: PE, PP, PET, PS, Nylon, specialty polymers
  • Capacity analysis: current operational facilities, planned expansions, technology-specific capacities
  • Price analysis: recycled plastic pricing versus virgin materials, cost competitiveness assessment
  • Investment landscape: funding trends, mergers & acquisitions, strategic partnerships (2020-2025)
  • Thermal Processes:
    • Pyrolysis: non-catalytic, catalytic, steam cracking, microwave-assisted, plasma pyrolysis
    • Process parameters, product yields, SWOT analysis, commercial applications
    • Polystyrene pyrolysis, tire recycling, biofuel production pathways
    • Co-pyrolysis of biomass and plastic wastes
    • Companies and operational capacities (130+ facilities profiled)
    • Gasification: technology overview, syngas production, methanol synthesis
    • Biomass gasification, syngas fermentation, thermochemical conversion
    • Multilayer packaging processing capabilities
    • SWOT analysis, companies and planned capacities
  • Solvent-Based Technologies:
    • Dissolution: selective dissolution, supercritical fluids, switchable solvents
    • Deep eutectic solvents (DES), ionic liquids, conventional organic solvents
    • Polyolefin dissolution systems, polystyrene recovery, PET solvolysis
    • Mixed polymer stream processing, solvent recovery and recycling systems
    • Economic optimization, life cycle assessment (LCA)
    • Commercial development, pilot plants, demonstration facilities
    • Delamination Technologies: multilayer packaging separation
    • Switchable Hydrophilicity Solvents (SHS), polyethylene-aluminum composites
    • Carton package processing, aluminum recovery methods
    • Economic and environmental benefits analysis
    • Chemical Depolymerization: hydrolysis, enzymolysis, methanolysis, glycolysis, aminolysis
    • Polymer-specific processes for PET, PU, PC, PA, PLA
    • Technology maturity, commercial deployments, capacity analysis
    • Companies and planned facilities
  • Emerging Technologies:
    • Hydrothermal Liquefaction (HTL) for multilayer packaging
    • Pyrolysis with in-line reforming
    • Carbon fiber recycling technologies
    • Thermoset recycling routes
    • Nano-catalysts and bio-catalysts applications
    • AI and machine learning optimization
  • Polymer Processing Methods:
    • Polyethylene (PE): recovery technologies, quality grades, processing parameters
    • Polypropylene (PP): chemical recycling methods, purity specifications
    • Polyethylene Terephthalate (PET): BHET upgrading, glycolysis, methanolysis
    • Polystyrene (PS): dissolution processes, monomer recovery
    • Polyamides (Nylon): depolymerization pathways, caprolactam recovery
    • Polycarbonate (PC), ABS, PVC: specialized processing techniquesPolyurethanes (PU): flexible and rigid foam recycling
  • Complex Waste Streams:
    • Multilayer packaging: barrier materials, food-grade applications
    • Mixed plastics: sorting technologies, selective separation
    • Composite materials: fiber-reinforced polymers, carbon fiber recovery
    • Electronic waste: circuit boards, displays, precious metals recovery
    • Automotive plastics: bumpers, dashboards, under-hood components
    • Construction materials: pipes, insulation, profiles
    • Textiles: natural fibers (cotton, wool, silk), synthetic fibers (polyester, nylon, acrylic)
    • Processing methods and recovery technologies
  • END PRODUCT ANALYSIS
    • Chemical Feedstocks
    • Fuels
    • Raw Materials
    • Energy Products:
  • Global Regulatory Landscape
  • Market Drivers
  • Market Challenges
  • Technology Readiness Levels (TRL) assessment: laboratory scale to commercial deployment
  • LIFE CYCLE ASSESSMENT (LCA)
  • Chemically recycled plastic products: commercial applications, brand partnerships
  • Market mapping: value chain analysis, competitive landscape
  • Industry news, funding and developments (2020-2025): M&A activity, capacity announcements
  • Strategic partnerships: petrochemical companies, brand owners, technology providers

 

The report profiles 191 leading companies pioneering advanced chemical recycling technologies, including: Aduro Clean Technologies, Advanced Plastic Purification International (APPI), Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, Aquafil, ARCUS Greencycling, Arkema, Axens, BASF, Bcircular, BioBTX, Biofabrik Technologies, Birch Biosciences, Blest (Microengineer), Blue Cycle, BlueAlp Technology, Borealis, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, CIRC, China Tianying, Chevron Phillips Chemical, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly, Dow Chemical Company, DyeRecycle, Eastman Chemical Company, Eco Fuel Technology, Ecopek, Ecoplasteam, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enespa, Enval, Environmental Solutions (Asia), Epoch Biodesign, Equipolymers, ESTER Biotech, Evonik Industries, Evoralis Limited, Evrnu, Extracthive, ExxonMobil, Fairmat, Fulcrum BioEnergy, Futerro, Freepoint Eco-Systems, Fych Technologies, Garbo, Greenback Recycling Technologies, GreenMantra Technologies, Greyparrot, Gr3n, Guangdong Dongyue Chemical Technology, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, Impact Recycling, Indaver, InEnTec, INEOS Styrolution, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical Corporation, Kaneka Corporation, Khepra, Klean Industries, LanzaTech, Licella, Loop Industries, LOTTE Chemical and more.....

 

 

 

1             CLASSIFICATION OF RECYCLING TECHNOLOGIES             22

 

2             RESEARCH METHODOLOGY              23

 

3             INTRODUCTION          24

  • 3.1        Global production of plastics             24
  • 3.2        The importance of plastic      25
  • 3.3        Issues with plastics use          25
  • 3.4        Bio-based or renewable plastics      26
    • 3.4.1    Drop-in bio-based plastics   26
    • 3.4.2    Novel bio-based plastics       27
  • 3.5        Biodegradable and compostable plastics  28
    • 3.5.1    Biodegradability          28
    • 3.5.2    Compostability            29
  • 3.6        Plastic pollution           29
  • 3.7        Policy and regulations              30
  • 3.8        The circular economy               31
  • 3.9        Plastic recycling           32
    • 3.9.1    Mechanical recycling                35
      • 3.9.1.1 Closed-loop mechanical recycling  35
      • 3.9.1.2 Open-loop mechanical recycling      35
      • 3.9.1.3 Polymer types, use, and recovery     36
    • 3.9.2    Advanced recycling (molecular recycling, chemical recycling)     36
      • 3.9.2.1 Main streams of plastic waste            37
      • 3.9.2.2 Comparison of mechanical and advanced chemical recycling    37
  • 3.10     Life cycle assessment             38
  • 3.11     Global Regulatory Landscape            39
    • 3.11.1 EPR (Extended Producer Responsibility) Schemes by Region       39
    • 3.11.2 Recycled Content Mandates               40
    • 3.11.3 Carbon Pricing Mechanisms               42
    • 3.11.4 Food Contact Approvals and Standards      43
    • 3.11.5 International Trade Regulations (Basel Convention)            44
  • 3.12     Technology Readiness & Commercialization           45
    • 3.12.1 Technology Readiness Levels (TRL) Assessment   46
    • 3.12.2 Commercialization Pathways              47
    • 3.12.3 Pilot to Commercial Scale Transition            49
    • 3.12.4 Technology Licensing Models             50

 

4             THE ADVANCED (CHEMICAL) RECYCLING MARKET            51

  • 4.1        Market drivers and trends      51
    • 4.1.1    Growing Environmental Concerns   51
    • 4.1.2    Stringent Regulatory Policies              52
    • 4.1.3    Corporate Sustainability Initiatives 54
    • 4.1.4    Technological Advancements             57
    • 4.1.5    Circular Economy Adoption 60
  • 4.2        Market Challenges and Restraints   61
    • 4.2.1    High Initial Investment Costs              61
    • 4.2.2    Technical Challenges               61
    • 4.2.3    Infrastructure Limitations     64
    • 4.2.4    Technological Barriers             64
    • 4.2.5    Supply Chain Complexities  67
    • 4.2.6    Cost Competitiveness             68
  • 4.3        Industry news, funding and developments 2020-2025      72
  • 4.4        Capacities       82
  • 4.5        Global polymer demand 2022-2040, segmented by recycling technology            84
    • 4.5.1    PE          84
    • 4.5.2    PP          85
    • 4.5.3    PET       86
    • 4.5.4    PS          87
    • 4.5.5    Nylon   88
    • 4.5.6    Others 89
  • 4.6        Global polymer demand 2022-2040, segmented by recycling technology, by region     90
    • 4.6.1    Europe                90
    • 4.6.2    North America              91
    • 4.6.3    South America              92
    • 4.6.4    Asia      93
    • 4.6.5    Oceania            95
    • 4.6.6    Africa   96
  • 4.7        Chemically recycled plastic products           97
  • 4.8        Market map    99
  • 4.9        Value chain     105
  • 4.10     Life Cycle Assessments (LCA) of advanced chemical recycling processes          105
    • 4.10.1 PE          106
    • 4.10.2 PP          106
    • 4.10.3 PET       107
  • 4.11     Recycled plastic yield and cost         107
    • 4.11.1 Plastic yield of each chemical recycling technologies        107
    • 4.11.2 Prices  107
  • 4.12     Market Analysis & Forecasts                109
    • 4.12.1 Market Size and Revenue Forecasts 2026-2040    109
    • 4.12.2 Revenue by Technology Type               110
    • 4.12.3 Revenue by End-Use Application     111

 

5             ADVANCED (CHEMICAL OR FEEDSTOCK) RECYCLING TECHNOLOGIES              113

  • 5.1        Applications   113
  • 5.2        Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste              114
  • 5.3        Thermal Processes    114
    • 5.3.1    Pyrolysis            114
      • 5.3.1.1 Technical Process and Variations    116
      • 5.3.1.2 Non-catalytic 116
      • 5.3.1.3 Catalytic            117
      • 5.3.1.4 Steam Cracking of Polymer Waste  119
        • 5.3.1.4.1           Technology Overview                119
        • 5.3.1.4.2           Process Conditions and Product Yields       120
        • 5.3.1.4.3           Integration with Refineries    121
        • 5.3.1.4.4           Commercial Applications     122
        • 5.3.1.4.5           Polystyrene pyrolysis 123
        • 5.3.1.4.6           Pyrolysis for production of bio fuel  123
        • 5.3.1.4.7           Used tires pyrolysis   127
          • 5.3.1.4.7.1      Conversion to biofuel               128
        • 5.3.1.4.8           Co-pyrolysis of biomass and plastic wastes             129
      • 5.3.1.5 Commercial Development and Investment               129
      • 5.3.1.6 Challenges and Considerations        129
      • 5.3.1.7 SWOT analysis              129
      • 5.3.1.8 Companies and capacities  130
    • 5.3.2    Gasification    131
      • 5.3.2.1 Technology overview 131
        • 5.3.2.1.1           Syngas conversion to methanol        132
        • 5.3.2.1.2           Biomass gasification and syngas fermentation       135
        • 5.3.2.1.3           Biomass gasification and syngas thermochemical conversion    136
      • 5.3.2.2 Applications and Potential    136
      • 5.3.2.3 Multilayer Packaging 136
      • 5.3.2.4 SWOT analysis              137
      • 5.3.2.5 Companies and capacities (current and planned)                138
  • 5.4        Solvent-Based Recycling Technologies        139
    • 5.4.1    Dissolution     139
      • 5.4.1.1 Technology overview 139
      • 5.4.1.2 Selective Dissolution and Precipitation        140
      • 5.4.1.3 Supercritical Fluid Technologies       141
      • 5.4.1.4 Advanced Solvent Systems for Mixed Plastics         141
      • 5.4.1.5 Switchable Solvent Technologies     141
      • 5.4.1.6 SWOT analysis              142
      • 5.4.1.7 Companies and capacities (current and planned)                143
    • 5.4.2    Delamination Technologies for Multilayer Packaging          145
      • 5.4.2.1 Technical Approaches             145
      • 5.4.2.2 Switchable Hydrophilicity Solvents (SHS)   145
      • 5.4.2.3 Chemical Recycling of "Polyal" (Polyethylene-Aluminum Composites) 145
      • 5.4.2.4 Delamination Process for Carton Packages              146
      • 5.4.2.5 Aluminum Recovery Methods             146
      • 5.4.2.6 Polyethylene Purification and Recycling      147
      • 5.4.2.7 Economic and Environmental Benefits        148
      • 5.4.2.8 Novel Approaches      149
    • 5.4.3    Solvent-Based Plastic Recycling       150
      • 5.4.3.1 Solvent Selection and Classification             150
        • 5.4.3.1.1           Conventional Organic Solvents         151
        • 5.4.3.1.2           Ionic Liquids   153
        • 5.4.3.1.3           Supercritical Fluids    153
        • 5.4.3.1.4           Deep Eutectic Solvents (DES)             154
      • 5.4.3.2 Polymer-Specific Solvent Recycling                155
        • 5.4.3.2.1           Polyolefin Dissolution Systems         155
        • 5.4.3.2.2           Polystyrene Solvent Recovery             156
        • 5.4.3.2.3           PET and Polyester Solvolysis               156
          • 5.4.3.2.3.1      BHET to Cyclohexanedimethanol (CHDM) 157
        • 5.4.3.2.4           Mixed Polymer Stream Processing  158
      • 5.4.3.3 Solvent Recovery and Recycling Systems   158
        • 5.4.3.3.1           Distillation and Purification  159
        • 5.4.3.3.2           Membrane Separation Technologies              159
        • 5.4.3.3.3           Economic Optimization          160
      • 5.4.3.4 Environmental Considerations          160
        • 5.4.3.4.1           Solvent Emissions Control   160
        • 5.4.3.4.2           Waste Stream Management 161
        • 5.4.3.4.3           Life Cycle Assessment of Solvent Systems                161
      • 5.4.3.5 Commercial Development and Scale-Up   162
        • 5.4.3.5.1           Pilot and Demonstration Plants         162
        • 5.4.3.5.2           Industrial Implementation Challenges         163
        • 5.4.3.5.3           Economic Viability Assessment        165
    • 5.4.4    Chemical Depolymerisation                166
      • 5.4.4.1 Hydrolysis        167
        • 5.4.4.1.1           Technology overview 167
        • 5.4.4.1.2           SWOT analysis              169
      • 5.4.4.2 Enzymolysis   169
        • 5.4.4.2.1           Technology overview 169
        • 5.4.4.2.2           SWOT analysis              170
      • 5.4.4.3 Methanolysis 171
        • 5.4.4.3.1           Technology overview 171
        • 5.4.4.3.2           SWOT analysis              171
      • 5.4.4.4 Glycolysis         172
        • 5.4.4.4.1           Technology overview 172
        • 5.4.4.4.2           SWOT analysis              173
      • 5.4.4.5 Aminolysis      174
        • 5.4.4.5.1           Technology overview 174
        • 5.4.4.5.2           SWOT analysis              174
      • 5.4.4.6 Companies and capacities (current and planned)                175
  • 5.5        Other advanced chemical recycling technologies 175
    • 5.5.1    Hydrothermal Liquefaction (HTL)     175
      • 5.5.1.1 Technical Mechanisms           175
      • 5.5.1.2 Performance and Application             176
      • 5.5.1.3 Commercial Development    176
      • 5.5.1.4 Hydrothermal Liquefaction Targeting Multilayer Packaging Waste             176
    • 5.5.2    Pyrolysis with in-line reforming          177
    • 5.5.3    Microwave-assisted pyrolysis             178
    • 5.5.4    Plasma pyrolysis         178
    • 5.5.5    Plasma gasification   179
    • 5.5.6    Carbon fiber recycling              180
    • 5.5.6.1 Processes        180
    • 5.5.6.2 Companies     182
  • 5.6        Advanced recycling of thermoset materials              183
    • 5.6.1    Thermal recycling        184
      • 5.6.1.1 Energy Recovery Combustion            184
      • 5.6.1.2 Anaerobic Digestion 184
      • 5.6.1.3 Pyrolysis Processing 185
      • 5.6.1.4 Microwave Pyrolysis  186
    • 5.6.2    Solvolysis         187
    • 5.6.3    Catalyzed Glycolysis 187
    • 5.6.4    Alcoholysis and Hydrolysis   188
    • 5.6.5    Ionic liquids    189
    • 5.6.6    Supercritical fluids     190
    • 5.6.7    Plasma              190
    • 5.6.8    Chemical Vapor Infiltration (CVI)      191
    • 5.6.9    Companies     191
  • 5.7        Comparison with Traditional Recycling Methods   192
    • 5.7.1    Mechanical Recycling Limitations   193
    • 5.7.2    Energy Efficiency Comparison           194
    • 5.7.3    Quality of Output Comparison          194
    • 5.7.4    Cost Analysis 196
  • 5.8        Emerging Advanced Mechanical Technologies        197
    • 5.8.1    Chemical Upcycling Integration        197
    • 5.8.2    Computational Modelling      197
    • 5.8.3    Hybrid Approaches    197
  • 5.9        Environmental Impact Assessment                197
    • 5.9.1    Carbon Footprint Analysis    197
    • 5.9.2    Energy Consumption Assessment  198
    • 5.9.3    Waste Reduction Potential   198
      • 5.9.3.1 Wastewater     199
      • 5.9.3.2 Atmospheric Emissions         199
      • 5.9.3.3 Catalyst and Media Waste    199
      • 5.9.3.4 Maintenance and Cleaning Waste   199
      • 5.9.3.5 Waste Management Approaches     199
      • 5.9.3.6 Regulatory Considerations and Classification        200
      • 5.9.3.7 Comparative Waste Production         200
      • 5.9.3.8 Environmental Impact and Future Directions           200
    • 5.9.4    Sustainability Metrics               201
  • 5.10     Emerging Technologies            202
    • 5.10.1 AI and Machine Learning Applications          202
      • 5.10.1.1            Sorting Optimization 203
      • 5.10.1.2            Process Control           203
      • 5.10.1.3            Quality Prediction       204
      • 5.10.1.4            Maintenance Prediction          204
    • 5.10.2 Robotics in Sorting     205
      • 5.10.2.1            Vision Systems             205
      • 5.10.2.2            Picking Mechanisms 205
      • 5.10.2.3            Control Systems          206
      • 5.10.2.4            Integration Methods  206
    • 5.10.3 Novel Catalyst Development               207
      • 5.10.3.1            Nano-catalysts             207
      • 5.10.3.2            Bio-catalysts  209
      • 5.10.3.3            Hybrid Catalysts          211

 

6             MATERIALS ANALYSIS               213

  • 6.1        Plastics              213
    • 6.1.1    Polyethylene (PE)        213
      • 6.1.1.1 HDPE Analysis              213
      • 6.1.1.2 LLDPE Analysis            214
      • 6.1.1.3 Recovery Methods     215
    • 6.1.2    Polypropylene (PP)     216
      • 6.1.2.1 Homopolymer               216
      • 6.1.2.2 Copolymer       217
      • 6.1.2.3 Processing Methods 217
      • 6.1.2.4 Quality Grades              221
    • 6.1.3    Polyethylene Terephthalate (PET)     223
      • 6.1.3.1 Bottle Grade   223
      • 6.1.3.2 Fiber Grade     223
      • 6.1.3.3 Film Grade       224
      • 6.1.3.4 Recovery Technologies            224
        • 6.1.3.4.1           Advanced BHET Upgrading to Specialty Chemicals             227
          • 6.1.3.4.1.1      Guerbet Reaction Pathways 227
          • 6.1.3.4.1.2      Biorefinery Integration Approaches 228
    • 6.1.4    Polystyrene (PS)           228
      • 6.1.4.1 General Purpose PS   228
      • 6.1.4.2 High Impact PS             228
      • 6.1.4.3 Expanded PS  229
      • 6.1.4.4 Processing Methods 229
    • 6.1.5    Other Plastics               230
      • 6.1.5.1 PVC      230
      • 6.1.5.2 PC         230
      • 6.1.5.3 ABS       231
      • 6.1.5.4 Mixed Plastics               231
  • 6.2        Metals 232
    • 6.2.1    Precious Metals           234
      • 6.2.1.1 Gold     234
      • 6.2.1.2 Silver    234
      • 6.2.1.3 Platinum Group Metals           235
      • 6.2.1.4 Recovery Methods     235
  • 6.3        Base Metals    236
    • 6.3.1    Copper               236
    • 6.3.2    Aluminium       237
    • 6.3.3    Steel     237
    • 6.3.4    Processing Technologies        238
  • 6.4        Rare Earth Elements 241
    • 6.4.1    Light REEs        241
    • 6.4.2    Heavy REEs     241
    • 6.4.3    Extraction Methods   242
  • 6.5        Electronic Waste         244
    • 6.5.1    Circuit Boards               244
      • 6.5.1.1 PCB Types        244
      • 6.5.1.2 Component Separation          245
      • 6.5.1.3 Metal Recovery             245
      • 6.5.1.4 Waste Management  246
    • 6.5.2    Batteries            246
      • 6.5.2.1 Lithium-ion     246
      • 6.5.2.2 Lead-acid         247
      • 6.5.2.3 Nickel-based  247
      • 6.5.2.4 Recovery Processes  249
    • 6.5.3    Displays            251
      • 6.5.3.1 LCD      251
      • 6.5.3.2 LED       251
      • 6.5.3.3 OLED   252
      • 6.5.3.4 Material Recovery       252
    • 6.5.4    Other Components   254
      • 6.5.4.1 Capacitors      254
      • 6.5.4.2 Resistors          254
      • 6.5.4.3 Semiconductors          255
      • 6.5.4.4 Connectors     255
  • 6.6        Textiles               256
    • 6.6.1    Natural Fibers                256
    • 6.6.2    Cotton 256
    • 6.6.3    Wool    257
    • 6.6.4    Silk        257
    • 6.6.5    Processing Methods 259
  • 6.7        Synthetic Fibers           261
    • 6.7.1    Polyester           261
    • 6.7.2    Nylon   261
    • 6.7.3    Acrylic 262
    • 6.7.4    Recovery Technologies            263

 

7             END PRODUCT ANALYSIS      266

  • 7.1        Chemical Feedstocks              266
    • 7.1.1    Monomers       266
      • 7.1.1.1 Market Drivers for Monomer Value Enhancement 270
      • 7.1.1.2 Performance Premium Applications              270
      • 7.1.1.3 Catalytic Upgrading Platforms           270
        • 7.1.1.3.1           Heterogeneous Catalyst Development         270
        • 7.1.1.3.2           Process Intensification Technologies             270
        • 7.1.1.3.3           Biocatalytic Monomer Enhancement            271
          • 7.1.1.3.3.1      Enzyme Engineering for Recycling Applications      271
          • 7.1.1.3.3.2      Metabolic Engineering for Specialty Chemicals     271
    • 7.1.2    Oligomers        271
    • 7.1.3    Specialty Chemicals 274
  • 7.2        Fuels    274
    • 7.2.1    Diesel  274
    • 7.2.2    Gasoline           275
    • 7.2.3    Synthetic Gas 275
  • 7.3        Raw Materials                276
    • 7.3.1    Recycled Plastics       276
    • 7.3.2    Recovered Metals       277
    • 7.3.3    Other Materials            277
  • 7.4        Energy Products           278
    • 7.4.1    Electricity          278
    • 7.4.2    Heat     279
    • 7.4.3    Biofuels             279
  • 7.5        Market Analysis by Sector      281
    • 7.5.1    Packaging (rigid, flexible, multilayer)              281
    • 7.5.2    Automotive and Transportation         282
    • 7.5.3    Building and Construction    283
    • 7.5.4    Electronics and Electrical      284
    • 7.5.5    Textiles and Apparel  285
    • 7.5.6    Consumer Goods       286
    • 7.5.7    Medical and Healthcare         287
    • 7.5.8    Agriculture       288

 

8             SUPPLY CHAIN AND INFRASTRUCTURE      290

  • 8.1        Feedstock Supply Chain        290
    • 8.1.1    Waste Collection Systems    290
    • 8.1.2    Sorting and Pre-processing Infrastructure  291
    • 8.1.3    Quality Standards for Feedstock       292
  • 8.2        Product Distribution Networks           293
  • 8.3        Infrastructure Gap Analysis by Region          294
  • 8.4        Circular Economy Integration             295

 

9             FUTURE OUTLOOK    296

  • 9.1        Emerging Technologies on the Horizon         296
    • 9.1.1    Biological/Enzymatic Recycling         296
    • 9.1.2    Plasma-Based Technologies               297
    • 9.1.3    AI and Digital Twin Applications        298
  • 9.2        Market Scenarios 2030-20410           299
    • 9.2.1    Best Case Scenario   299
    • 9.2.2    Base Case Scenario  300
    • 9.2.3    Conservative Scenario            301
  • 9.3        Potential Market Disruptors 302
  • 9.4        Long-term Sustainability Assessment          303

 

10          COMPANY PROFILES                303 (192 company profiles)

 

11          GLOSSARY OF TERMS             446

 

12          REFERENCES 448

 

 

List of Tables

  • Table 1. Types of recycling.   22
  • Table 2. Issues related to the use of plastics.           25
  • Table 3. Type of biodegradation.       29
  • Table 4. Overview of the recycling technologies.    34
  • Table 5. Polymer types, use, and recovery. 36
  • Table 6. Composition of plastic waste streams.     37
  • Table 7. Comparison of mechanical and advanced chemical recycling.                37
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.          38
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution). 38
  • Table 10. Technology Readiness Levels (TRL) Assessment.            46
  • Table 11. Market drivers and trends in the advanced chemical recycling market.            51
  • Table 12. Global regulations driving plastics recycling.      52
  • Table 13. Corporate Sustainability Initiatives.          55
  • Table 14. Technological Advancements.      58
  • Table 15. Technical Challenges.        62
  • Table 16. Technological Barriers.      65
  • Table 17. Cost Competitiveness Analysis. 68
  • Table 18. Advanced (chemical) recycling industry news, funding and developments 2020-2025.       72
  • Table 19. Advanced chemical recycling capacities, by technology.           82
  • Table 20. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).             84
  • Table 21. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).             85
  • Table 22. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).             86
  • Table 23. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             87
  • Table 24. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).             88
  • Table 25. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*         89
  • Table 26. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).   90
  • Table 27. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             91
  • Table 28. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             92
  • Table 29. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).         93
  • Table 30. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 95
  • Table 31. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).      96
  • Table 32. Example chemically recycled plastic products.                97
  • Table 33. Life Cycle Assessments (LCA) of Advanced chemical recycling Processes.   105
  • Table 34. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).        106
  • Table 35. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP).     106
  • Table 36. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).  107
  • Table 37. Plastic yield of each chemical recycling technologies. 107
  • Table 38. Chemically recycled plastics prices in USD.       108
  • Table 39. Advanced Recycling Market Size and Revenue Forecasts 2026-2040 (Millions USD).             109
  • Table 40. Advanced Recycling Revenue Forecasts by Technology Type 2026-2040 (Millions USD).     110
  • Table 41. Advanced Recycling Revenue Forecasts by End-Use Application 2026-2040 (Millions USD).                111
  • Table 42. Applications of chemically recycled materials. 113
  • Table 43. Current and Emerging Technologies for Chemical and Advanced Mechanical Recycling of Polymer Waste.            114
  • Table 44. Pyrolysis Technology Comparison for Multilayer Packaging Processing.          116
  • Table 45. Summary of non-catalytic pyrolysis technologies.         116
  • Table 46. Summary of catalytic pyrolysis technologies.    117
  • Table 47. Steam Cracking Technology Specifications for Polymer Waste Processing.  120
  • Table 48. Product Yields and Quality Specifications for Polymer Waste Steam Cracking.          121
  • Table 49. Refinery Integration Requirements for Polymer Waste Steam Cracking.          122
  • Table 50. Commercial Steam Cracking Applications for Polymer Waste Processing.    123
  • Table 51. Summary of pyrolysis technique under different operating conditions.            125
  • Table 52. Biomass materials and their bio-oil yield.             126
  • Table 53. Biofuel production cost from the biomass pyrolysis process. 126
  • Table 54. Pyrolysis companies and plant capacities, current and planned.         130
  • Table 55. Summary of gasification technologies.  131
  • Table 56. Gasification Technology Specifications for Multilayer Packaging Waste.         137
  • Table 57. Advanced recycling (Gasification) companies. 138
  • Table 58. Summary of dissolution technologies.   139
  • Table 59. Dissolution Technology Performance for Multilayer Packaging Recycling.      140
  • Table 60. Switchable Solvent Technologies.              142
  • Table 61. Advanced recycling (Dissolution) companies    143
  • Table 62. Delamination Method Performance for Multilayer Packaging Separation.      144
  • Table 63. Aluminum Recovery Methods.     147
  • Table 64. Economic and Environmental Benefits of Delamination Technologies.            148
  • Table 65. Novel Approaches in Delamination Technologies - Comprehensive Analysis               149
  • Table 66. Primary Solvent Categories and Applications.   151
  • Table 67. Process Economics and Operating Parameters.              152
  • Table 68. Solvent Recovery and Recycling Systems.            152
  • Table 69. Polyolefin Dissolution Systems.  155
  • Table 70. Solvent System Performance Comparison.         156
  • Table 71. Membrane separation technologies.        159
  • Table 72. Life cycle assessment (LCA) of solvent systems.             161
  • Table 73. Commercial Development and Scale-Up.             162
  • Table 74. Pilot and Demonstration Plants. 163
  • Table 75. Industrial Implementation Challenges.  164
  • Table 76. Technical Implementation Barriers.          164
  • Table 77. Economic Implementation Barriers.         164
  • Table 78. Economic Viability Assessment. 165
  • Table 79. Technology-Specific Economics 165
  • Table 80. Depolymerisation processes for PET, PU, PC and PA, products and yields.    167
  • Table 81. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           167
  • Table 82. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 169
  • Table 83. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 171
  • Table 84. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           172
  • Table 85. Summary of aminolysis technologies.    174
  • Table 86. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                175
  • Table 87. Hydrothermal Liquefaction Operating Parameters for Multilayer Packaging. 177
  • Table 88. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.            177
  • Table 89. Overview of microwave-assisted pyrolysis for advanced chemical recycling.              178
  • Table 90. Overview of plasma pyrolysis for advanced chemical recycling.           179
  • Table 91. Overview of plasma gasification for advanced chemical recycling.     179
  • Table 92. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.       180
  • Table 93. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.       182
  • Table 94. Recycled carbon fiber producers, technology and capacity.    182
  • Table 95. Advanced Recycling Technologies for Specialized Packaging Applications.  183
  • Table 96.  Current thermoset recycling routes.        184
  • Table 97. Companies developing advanced thermoset recycing routes.               191
  • Table 98. Comparison of Advanced Chemical Recycling with Traditional Recycling Methods.                192
  • Table 99. Energy Efficiency Comparison: Advanced Chemical Recycling vs. Mechanical Recycling   194
  • Table 100. Quality of Output Comparison. 195
  • Table 101. Cost Analysis of advanced plastic recycling versus traditional recycling methods.               196
  • Table 102. Carbon Footprint Analysis.          197
  • Table 103. Energy Consumption Assessment.        198
  • Table 104. Sustainability Metrics.    201
  • Table 105. AI and Machine Learning Applications. 202
  • Table 106. Types of Nano-catalysts.               208
  • Table 107. Types of bio-catalysts.    210
  • Table 108. Advanced polyethylene recovery methods.      215
  • Table 109. Polypropylene processing methods for chemical recycling.  219
  • Table 110. PP Quality Grades from Chemical Recycling.  221
  • Table 111. Advanced PET recovery technologies . 225
  • Table 112. BHET Upgrading Technologies: Process Comparison.               227
  • Table 113. Advanced chemical recycling of metals.            232
  • Table 114. Precious metals recovery methods.      235
  • Table 115. Advanced processing technologies for base metal recycling .             239
  • Table 116. Rare Earth Elements Extraction Methods.         242
  • Table 117. Recovery Processes for Batteries.           249
  • Table 118. Advanced technologies for materials recovery in displays.    252
  • Table 119. Processing Methods for Natural Fiber Recycling.          259
  • Table 120. Recovery Technologies for Synthetic Fibers      263
  • Table 121. Monomers from chemical recycling.     267
  • Table 122. Oligomers from advanced recycling.     273

 

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes.       25
  • Figure 2.  Coca-Cola PlantBottle®.   27
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics.       28
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 30
  • Figure 5. The circular plastic economy.        32
  • Figure 6. Current management systems for waste plastics.           33
  • Figure 7. Overview of the different circular pathways for plastics.             34
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).             85
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).             86
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).             87
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             88
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).             89
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).          90
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes). 91
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             92
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             93
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).        94
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).                95
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).    96
  • Figure 20. Market map for advanced chemical recycling. 104
  • Figure 21. Value chain for advanced chemical recycling market.                105
  • Figure 22. Advanced Recycling Market Size and Revenue Forecasts 2026-2040 (Millions USD).           109
  • Figure 23. Advanced Recycling Revenue Forecasts by Technology Type 2026-2040 (Millions USD).   111
  • Figure 24. Advanced Recycling Revenue Forecasts by End-Use Application 2026-2040 (Millions USD).                112
  • Figure 25. Schematic layout of a pyrolysis plant.   115
  • Figure 26. Waste plastic production pathways to (A) diesel and (B) gasoline      124
  • Figure 27. Schematic for Pyrolysis of Scrap Tires. 127
  • Figure 28. Used tires conversion process.  128
  • Figure 29. SWOT analysis-pyrolysis for advanced recycling.          130
  • Figure 30. Total syngas market by product in MM Nm³/h of Syngas.          133
  • Figure 31. Overview of biogas utilization.    134
  • Figure 32. Biogas and biomethane pathways.          135
  • Figure 33. SWOT analysis-gasification for advanced recycling.    138
  • Figure 34. SWOT analysis-dissoluton for advanced recycling.      143
  • Figure 35. Products obtained through the different solvolysis pathways of PET, PU, and PA.    166
  • Figure 36. SWOT analysis-Hydrolysis for advanced chemical recycling. 169
  • Figure 37. SWOT analysis-Enzymolysis for advanced chemical recycling.            170
  • Figure 38. SWOT analysis-Methanolysis for advanced chemical recycling.          172
  • Figure 39. SWOT analysis-Glycolysis for advanced chemical recycling. 173
  • Figure 40. SWOT analysis-Aminolysis for advanced chemical recycling.               174
  • Figure 41. Alterra’s Akron Plant in Ohio.       308
  • Figure 42. ChemCyclingTM prototypes.       316
  • Figure 43. ChemCycling circle by BASF.       316
  • Figure 44. Recycled carbon fibers obtained through the R3FIBER process.         318
  • Figure 45. Cassandra Oil  process.  329
  • Figure 46. CuRe Technology process.            336
  • Figure 47. MoReTec.   379
  • Figure 48. Chemical decomposition process of polyurethane foam.       383
  • Figure 49. OMV ReOil process.           393
  • Figure 50. Schematic Process of Plastic Energy’s TAC Chemical Recycling.        398
  • Figure 51. Easy-tear film material from recycled material.              418
  • Figure 52. Polyester fabric made from recycled monomers.          423
  • Figure 53. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).     432
  • Figure 54. Teijin Frontier Co., Ltd. Depolymerisation process.      436
  • Figure 55. The Velocys process.        441
  • Figure 56. The Proesa® Process.        443
  • Figure 57. Worn Again products.       444

 

 

 

 

Purchasers will receive the following:

  • PDF report download/by email. 
  • Comprehensive Excel spreadsheet of all data.
  • Mid-year Update

 

The Global Advanced (Chemical) Recycling Market 2026-2040
The Global Advanced (Chemical) Recycling Market 2026-2040
Instant PDF download.

The Global Advanced (Chemical) Recycling Market 2026-2040
The Global Advanced (Chemical) Recycling Market 2026-2040
PDF and Print Edition (including tracked delivery).

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com