The Global Market for Biodegradable and Compostable Packaging 2025-2035

0

cover

cover

  • Published: September 2024
  • Pages: 324
  • Tables: 54
  • Figures: 73

 

The market for biodegradable and compostable packaging is experiencing rapid growth, driven by increasing environmental awareness, stringent regulations, and shifting consumer preferences towards sustainable products. This sector has emerged as a crucial component of the global packaging industry, offering eco-friendly alternatives to traditional plastic packaging. Currently, the market is characterized by a diverse range of materials and technologies, including polylactic acid (PLA), polyhydroxyalkanoates (PHA), starch-based blends, and cellulose-derived packaging solutions. These materials are finding applications across various industries, with food packaging representing the largest segment due to growing concerns about plastic waste in the food supply chain. Major players in the packaging industry are investing heavily in research and development to improve the performance and cost-effectiveness of biodegradable materials. Simultaneously, numerous start-ups and innovative companies are entering the market with novel solutions, such as seaweed-based packaging and mycelium-derived materials. The market is witnessing a trend towards the development of compostable packaging that can break down in home composting conditions, addressing the limitations of industrial composting infrastructure. Additionally, there is a growing focus on creating multi-functional packaging that not only biodegrades but also offers enhanced shelf life for products or incorporates smart technologies.

Despite its growth, the biodegradable packaging market faces challenges, including higher production costs compared to conventional plastics, performance limitations in certain applications, and the need for proper waste management infrastructure. However, ongoing technological advancements and economies of scale are gradually addressing these issues. As the global push for sustainability intensifies, the biodegradable and compostable packaging market is expected to continue its upward trajectory. The industry is likely to see further innovations, increased adoption across various sectors, and potential consolidation as larger companies acquire promising technologies. This growth is not only reshaping the packaging industry but also contributing significantly to global efforts in reducing plastic waste and environmental pollution.

The Global Market for Biodegradable and Compostable Packaging 2025-2035 provides a thorough examination of the market landscape from 2025 to 2035, offering valuable insights for manufacturers, investors, and stakeholders in the sustainable packaging ecosystem. Report contents include: 

  • Market Size and Growth Projections: Detailed forecasts of the biodegradable and compostable packaging market size and growth rate from 2025 to 2035, segmented by product type, material, end-use industry, and region.
  • Material Innovation Deep Dive: Comprehensive analysis of both synthetic and natural biobased packaging materials, including PLA, Bio-PET, PHA, starch-based blends, and emerging solutions like mycelium and seaweed-based packaging.
  • Application Landscape: Exploration of key application areas such as food packaging, consumer goods, pharmaceuticals, and e-commerce, with insights into specific requirements and growth opportunities.
  • Competitive Landscape: Profiles of leading companies and emerging players in the biodegradable packaging space, including their technologies, strategies, and market positioning. Companies profiled include 9Fiber, Inc., ADBioplastics, Advanced Biochemical (Thailand) Co., Ltd., Aeropowder Limited, AGRANA Staerke GmbH, Ahlstrom-Munksjö Oyj, Alberta Innovates/Innotech Materials, LLC, Alter Eco Pulp, Alterpacks, AmicaTerra, An Phát Bioplastics, Anellotech, Inc., Ankor Bioplastics Co., Ltd., ANPOLY, Inc., Apeel Sciences, Applied Bioplastics, Aquapak Polymers Ltd, Archer Daniel Midland Company (ADM), Arekapak GmbH, Arkema S.A, Arrow Greentech, Asahi Kasei Chemicals Corporation, Attis Innovations, llc, Avani Eco, Avantium B.V., Avient Corporation, Balrampur Chini Mills, BASF SE, Bio Fab NZ, Bio Plast Pom, Bio2Coat, Bioelements Group, Biofibre GmbH, Bioform Technologies, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovox GmbH, BlockTexx Pty Ltd., Blue Ocean Closures, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Brightplus Oy, Business Innovation Partners Co., Ltd., Carbiolice, Carbios, Cardia Bioplastics Ltd., CARAPAC Company, Cass Materials Pty Ltd, Celanese Corporation, Cellugy, Cellutech AB (Stora Enso), Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), CJ Biomaterials, Inc., Coastgrass ApS, Corumat, Inc., Cruz Foam, CuanTec Ltd., Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific LLC, DIC Corporation, DIC Products, Inc., DKS Co. Ltd., Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, Ecomann Biotechnology Co., Ltd., Ecoshell, EcoSynthetix, Inc., Ecovia Renewables, Enkev, Epoch Biodesign, Eranova, Esbottle Oy, Fiberlean Technologies, Fiberwood Oy, FKuR Kunststoff GmbH, Floreon, Footprint, Fraunhofer Institute for Silicate Research ISC, Full Cycle Bioplastics LLC, Futamura Chemical Co., Ltd., Futuramat Sarl, Futurity Bio-Ventures Ltd., Genecis Bioindustries, Inc., Grabio Greentech Corporation, Granbio Technologies, GreenNano Technologies Inc., GS Alliance Co. Ltd, Guangzhou Bio-plus Materials Technology Co., Ltd., Hokuetsu Toyo Fibre Co., Ltd., Holmen Iggesund, IUV Srl, Jiangsu Jinhe Hi-Tech Co., Ltd., Jiangsu Torise Biomaterials Co., Ltd, JinHui ZhaoLang High Technology Co., Ltd., Kagzi Bottles Private Limited, Kami Shoji Company, Kaneka Corporation, Kelpi Industries Ltd., Kingfa Sci. & Tech. Co. Ltd., Klabin S.A., Lactips S.A., LAM'ON, LanzaTech, Licella, Lignin Industries, Loick Biowertstoff GmbH, LOTTE Chemical Corporation, MadeRight, MakeGrowLab, Marea, Marine Innovation Co., Ltd, Melodea Ltd., Mi Terro, Inc., Mitr Phol, Mitsubishi Chemical Corporation, Mitsubishi Polyester Film GmbH, Mitsui Chemicals, Inc., Mobius, Mondi, Multibax Public Co., Ltd., Nabaco, Inc., NatPol, Nature Coatings, Inc., NatureWorks LLC, New Zealand Natural Fibers (NZNF), Newlight Technologies, NEXE Innovations Inc., Nippon Paper Industries, Notpla, Novamont S.p.A., Novomer, Oimo, Oji Paper Company, Omya, one • five GmbH, Origin Materials, Pack2Earth, Paptic Ltd., Pivot Materials LLC, Plafco Fibertech Oy, Plantic Technologies Ltd., Plantics B.V., Poliloop, Polyferm Canada, Pond Biomaterials, Provenance Biofabrics, Inc., PT Intera Lestari Polimer, PTT MCC Biochem Co., Ltd., Qnature UG, Rengo Co., Ltd., Rise Innventia AB, Rodenburg Productie B.V., Roquette S.A., RWDC Industries, S.lab, Sappi Limited, Saudi Basic Industries Corp. (SABIC), Searo, Shellworks, Shenzhen Ecomann Biotechnology Co., Ltd., Sirmax Group, SK Chemicals Co., Ltd., Solvay SA, Spectrus Sustainable Solutions Pvt Ltd, Spero Renewables, StePAc, Stora Enso Oyj, Sufresca, Sulapac Oy, Sulzer Chemtech AG, SUPLA Bioplastics, Sway Innovation Co., Sweetwater Energy, Taghleef Industries Llc, Teal Bioworks, Inc., TemperPack® Technologies, Termotécnica, TerraVerdae BioWorks Inc, Tianjin GreenBio Materials Co., Ltd, Ticinoplast, TIPA, Toppan Printing Co., Ltd., Toraphene, TotalEnergies Corbion, Universal Bio Pack Co., Ltd., UPM Biochemicals, UPM-Kymmene Oyj, Valentis Nanotech, Vegea srl, Verso Corporation, Weidmann Fiber Technology, Woamy Oy, Woodly Ltd., Worn Again Technologies, Xampla, Yangi, Yokohama Bio Frontier, Inc., Zelfo Technology, ZeroCircle, Zhejiang Jinjiahao Green Nanomaterial Co., Ltd.
  • Sustainability Impact: Assessment of the environmental benefits and challenges associated with biodegradable and compostable packaging, including life cycle analyses and circular economy initiatives.
  • Recent developments in biodegradable packaging technology.
  • Market Drivers and Opportunities.
  • Challenges and Market Dynamics
  • Regional Analysis and Market Opportunities
  • In-depth analysis of biodegradable packaging applications across various industries:
    • Food and Beverage: Largest market segment with diverse applications from fresh produce to dairy packaging
    • Consumer Goods: Growing demand in personal care and household products
    • Pharmaceutical: Increasing use of bioplastics in medical packaging and drug delivery systems
    • E-commerce: Rising adoption of sustainable packaging solutions for online retail
  • Materials Benchmarking and Performance Analysis
  • Manufacturing and Processing Innovations
    • Improvements in extrusion and thermoforming processes
    • Novel approaches to enhance material properties
    • Scalability considerations for mass production
    • Quality control and testing methodologies
  • Investment Landscape and Market Opportunities
  • Regulatory Framework and Standards

 

As the world moves towards more sustainable packaging solutions, understanding the biodegradable and compostable packaging market is crucial for:

  • Packaging manufacturers looking to expand their product portfolio
  • Brand owners seeking to meet sustainability goals and consumer demands
  • Investors interested in high-growth areas of the packaging industry
  • Policy makers developing regulations for sustainable packaging
  • Researchers and material scientists working on next-generation packaging solutions

 

 

1             EXECUTIVE SUMMARY            18

  • 1.1        Global Packaging Market       18
  • 1.2        The Market for Biodegradable and Compostable Packaging          19
    • 1.2.1    By biobased plastics type      19
    • 1.2.2    By packaging product type    20
    • 1.2.3    By end-use market     21
    • 1.2.4    By region           22
  • 1.3        Main types       22
    • 1.3.1    Cellulose acetate        24
    • 1.3.2    PLA       24
    • 1.3.3    Aliphatic-aromatic co-polyesters     25
    • 1.3.4    PHA      25
    • 1.3.5    Starch/starch blends 25
  • 1.4        Prices  26
  • 1.5        Market Trends                27
  • 1.6        Market Drivers for recent growth in Biodegradable and Compostable Packaging            28
  • 1.7        Challenges for Biodegradable and Compostable Packaging         29

 

2             BIOBASED MATERIALS IN BIODEGRADABLE AND COMPOSTABLE PACKAGING               31

  • 2.1        Materials innovation 31
  • 2.2        Active packaging         31
  • 2.3        Monomaterial packaging       31
  • 2.4        Conventional polymer materials used in packaging            32
    • 2.4.1    Polyolefins: Polypropylene and polyethylene            33
      • 2.4.1.1 Overview           33
      • 2.4.1.2 Grades               33
      • 2.4.1.3 Producers         34
    • 2.4.2    PET and other polyester polymers   35
      • 2.4.2.1 Overview           35
    • 2.4.3    Renewable and bio-based polymers for packaging             35
    • 2.4.4    Comparison of synthetic fossil-based and bio-based polymers  37
    • 2.4.5    Processes for bioplastics in packaging        37
    • 2.4.6    End-of-life treatment of bio-based and sustainable packaging   38
  • 2.5        Synthetic bio-based packaging materials   39
    • 2.5.1    Polylactic acid (Bio-PLA)        39
      • 2.5.1.1 Overview           39
      • 2.5.1.2 Properties         40
      • 2.5.1.3 Applications   40
      • 2.5.1.4 Advantages     41
      • 2.5.1.5 Challenges      41
      • 2.5.1.6 Commercial examples            42
    • 2.5.2    Polyethylene terephthalate (Bio-PET)            42
      • 2.5.2.1 Overview           43
      • 2.5.2.2 Properties         43
      • 2.5.2.3 Applications   43
      • 2.5.2.4 Advantages of Bio-PET in Packaging              44
      • 2.5.2.5 Challenges and Limitations 44
      • 2.5.2.6 Commercial examples            45
    • 2.5.3    Polytrimethylene terephthalate (Bio-PTT)   46
      • 2.5.3.1 Overview           46
      • 2.5.3.2 Production Process   46
      • 2.5.3.3 Properties         46
      • 2.5.3.4 Applications   46
      • 2.5.3.5 Advantages of Bio-PTT in Packaging               47
      • 2.5.3.6 Challenges and Limitations 47
      • 2.5.3.7 Commercial examples            48
    • 2.5.4    Polyethylene furanoate (Bio-PEF)     48
      • 2.5.4.1 Overview           48
      • 2.5.4.2 Properties         48
      • 2.5.4.3 Applications   49
      • 2.5.4.4 Advantages of Bio-PEF in Packaging              49
      • 2.5.4.5 Challenges and Limitations 49
      • 2.5.4.6 Commercial examples            50
    • 2.5.5    Bio-PA 50
      • 2.5.5.1 Overview           50
      • 2.5.5.2 Properties         50
      • 2.5.5.3 Applications in Packaging     51
      • 2.5.5.4 Advantages of Bio-PA in Packaging 51
      • 2.5.5.5 Challenges and Limitations 51
      • 2.5.5.6 Commercial examples            52
    • 2.5.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                52
      • 2.5.6.1 Overview           52
      • 2.5.6.2 Properties         52
      • 2.5.6.3 Applications in Packaging     53
      • 2.5.6.4 Advantages of Bio-PBAT in Packaging           53
      • 2.5.6.5 Challenges and Limitations 53
      • 2.5.6.6 Commercial examples            54
    • 2.5.7    Polybutylene succinate (PBS) and copolymers       54
      • 2.5.7.1 Overview           54
      • 2.5.7.2 Properties         54
      • 2.5.7.3 Applications in Packaging     55
      • 2.5.7.4 Advantages of Bio-PBS and Co-polymers in Packaging     55
      • 2.5.7.5 Challenges and Limitations 55
      • 2.5.7.6 Commercial examples            56
    • 2.5.8    Polypropylene (Bio-PP)            56
      • 2.5.8.1 Overview           56
      • 2.5.8.2 Properties         56
      • 2.5.8.3 Applications in Packaging     56
      • 2.5.8.4 Advantages of Bio-PP in Packaging 57
      • 2.5.8.5 Challenges and Limitations 57
      • 2.5.8.6 Commercial examples            57
  • 2.6        Natural bio-based packaging materials       58
    • 2.6.1    Polyhydroxyalkanoates (PHA)             58
      • 2.6.1.1 Properties         58
      • 2.6.1.2 Applications in Packaging     58
      • 2.6.1.3 Advantages of PHA in Packaging      60
      • 2.6.1.4 Challenges and Limitations 60
      • 2.6.1.5 Commercial examples            60
    • 2.6.2    Starch-based blends 61
      • 2.6.2.1 Overview           61
      • 2.6.2.2 Properties         61
      • 2.6.2.3 Applications in Packaging     61
      • 2.6.2.4 Advantages of Starch-Based Blends in Packaging 62
      • 2.6.2.5 Challenges and Limitations 62
      • 2.6.2.6 Commercial examples            62
    • 2.6.3    Cellulose          62
      • 2.6.3.1 Feedstocks      62
        • 2.6.3.1.1           Wood  63
        • 2.6.3.1.2           Plant    63
        • 2.6.3.1.3           Tunicate             64
        • 2.6.3.1.4           Algae   64
        • 2.6.3.1.5           Bacteria             65
      • 2.6.3.2 Microfibrillated cellulose (MFC)        66
        • 2.6.3.2.1           Properties         66
      • 2.6.3.3 Nanocellulose               66
        • 2.6.3.3.1           Cellulose nanocrystals           66
          • 2.6.3.3.1.1      Applications in packaging     67
        • 2.6.3.3.2           Cellulose nanofibers 68
          • 2.6.3.3.2.1      Applications in packaging     69
        • 2.6.3.3.3           Bacterial Nanocellulose (BNC)          75
          • 2.6.3.3.3.1      Applications in packaging     77
      • 2.6.3.4 Commercial examples            78
    • 2.6.4    Protein-based bioplastics in packaging       78
      • 2.6.4.1 Feedstocks      78
      • 2.6.4.2 Commercial examples            80
    • 2.6.5    Lipids and waxes for packaging         80
      • 2.6.5.1 Overview           80
      • 2.6.5.2 Commercial examples            81
    • 2.6.6    Seaweed-based packaging  81
      • 2.6.6.1 Overview           81
      • 2.6.6.2 Production       82
      • 2.6.6.3 Applications in packaging     83
      • 2.6.6.4 Producers         83
    • 2.6.7    Mycelium          83
      • 2.6.7.1 Overview           83
      • 2.6.7.2 Applications in packaging     84
      • 2.6.7.3 Commercial examples            85
    • 2.6.8    Chitosan           85
      • 2.6.8.1 Overview           85
      • 2.6.8.2 Applications in packaging     86
      • 2.6.8.3 Commercial examples            86
    • 2.6.9    Bio-naphtha   88
      • 2.6.9.1 Overview           88
      • 2.6.9.2 Markets and applications      88
      • 2.6.9.3 Commercial examples            90

 

3             MARKETS AND APPLICATIONS           91

  • 3.1        Paper and board packaging 91
  • 3.2        Food packaging           91
    • 3.2.1    Bio-Based films and trays      92
    • 3.2.2    Bio-Based pouches and bags             92
    • 3.2.3    Bio-Based textiles and nets  92
    • 3.2.4    Bioadhesives 93
      • 3.2.4.1 Starch 94
      • 3.2.4.2 Cellulose          94
      • 3.2.4.3 Protein-Based               94
    • 3.2.5    Barrier coatings and films     94
      • 3.2.5.1 Polysaccharides          95
        • 3.2.5.1.1           Chitin  96
        • 3.2.5.1.2           Chitosan           96
        • 3.2.5.1.3           Starch 96
      • 3.2.5.2 Poly(lactic acid) (PLA)              96
      • 3.2.5.3 Poly(butylene Succinate)       96
      • 3.2.5.4 Functional Lipid and Proteins Based Coatings        96
    • 3.2.6    Active and Smart Food Packaging   97
      • 3.2.6.1 Active Materials and Packaging Systems    97
      • 3.2.6.2 Intelligent and Smart Food Packaging           98
    • 3.2.7    Antimicrobial films and agents          99
      • 3.2.7.1 Natural               100
      • 3.2.7.2 Inorganic nanoparticles          100
      • 3.2.7.3 Biopolymers   100
    • 3.2.8    Bio-based Inks and Dyes        101
      • 3.2.9    Edible films and coatings       101
        • 3.2.9.1 Overview           101
        • 3.2.9.2 Commercial examples            103
  • 3.3        Biobased films and coatings in packaging 104
    • 3.3.1    Overview           104
    • 3.3.2    Challenges using bio-based paints and coatings   104
    • 3.3.3    Types of bio-based coatings and films in packaging           107
      • 3.3.3.1 Polyurethane coatings             107
        • 3.3.3.1.1           Properties         107
        • 3.3.3.1.2           Bio-based polyurethane coatings     107
        • 3.3.3.1.3           Products           108
      • 3.3.3.2 Acrylate resins              109
        • 3.3.3.2.1           Properties         109
        • 3.3.3.2.2           Bio-based acrylates  109
        • 3.3.3.2.3           Products           110
      • 3.3.3.3 Polylactic acid (Bio-PLA)        110
        • 3.3.3.3.1           Properties         111
        • 3.3.3.3.2           Bio-PLA coatings and films  112
      • 3.3.3.4 Polyhydroxyalkanoates (PHA) coatings         112
      • 3.3.3.5 Cellulose coatings and films               113
        • 3.3.3.5.1           Microfibrillated cellulose (MFC)        113
        • 3.3.3.5.2           Cellulose nanofibers 114
          • 3.3.3.5.2.1      Properties         114
          • 3.3.3.5.2.2      Product developers    116
      • 3.3.3.6 Lignin coatings              118
      • 3.3.3.7 Protein-based biomaterials for coatings      118
        • 3.3.3.7.1           Plant derived proteins              118
        • 3.3.3.7.2           Animal origin proteins              118
  • 3.4        Carbon capture derived materials for packaging   119
    • 3.4.1    Benefits of carbon utilization for plastics feedstocks         120
    • 3.4.2    CO₂-derived polymers and plastics 122
    • 3.4.3    CO2 utilization products        123
  • 3.5        Flexible packaging     124
  • 3.6        Rigid packaging            127
  • 3.7        Coatings and films     130

 

4             COMPANY PROFILES                131 (230 company profiles)

 

5             RESEARCH METHODOLOGY              313

 

6             REFERENCES 314

 

List of Tables

  • Table 1. Global biodegradable and compostable packaging by biobased plastics type, 2023-2035 (1,000 tonnes).             19
  • Table 2. Global biodegradable and compostable packaging by packaging product type, 2023-2035 (1,000 tonnes).             20
  • Table 3. Global biodegradable and compostable packaging by end-use market, 2023-2035 (1,000 tonnes).             21
  • Table 4. Global biodegradable and compostable packaging by region, 2023-2035 (1,000 tonnes).    22
  • Table 5. Main Types of Biodegradable and Compostable Packaging Materials  23
  • Table 6. Average prices by bioplastic type, 2024 (US$ per kg).      26
  • Table 7. Average annual prices by bioplastic type, 2020-2023 (US$ per kg).        26
  • Table 8. Market trends in Biodegradable and Compostable Packaging  27
  • Table 9. Market drivers for recent growth in the Biodegradable and Compostable Packaging market.                28
  • Table 10. Challenges for Biodegradable and Compostable Packaging.  29
  • Table 11. Types of bio-based plastics and fossil-fuel-based plastics       32
  • Table 12. Comparison of synthetic fossil-based and bio-based polymers.           37
  • Table 13. Processes for bioplastics in packaging. 38
  • Table 14. LDPE film versus PLA, 2019–24 (USD/tonne).    39
  • Table 15. PLA properties for packaging applications.         40
  • Table 16. Applications, advantages and disadvantages of PHAs in packaging. 59
  • Table 17. Major polymers found in the extracellular covering of different algae.               64
  • Table 18. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            66
  • Table 19. Applications of nanocrystalline cellulose (CNC).            67
  • Table 20. Market overview for cellulose nanofibers in packaging.              69
  • Table 21. Applications of Bacterial Nanocellulose in Packaging. 77
  • Table 22. Types of protein based-bioplastics, applications and companies.      79
  • Table 23. Overview of alginate-description, properties, application and market size.   82
  • Table 24. Companies developing algal-based bioplastics.             83
  • Table 25. Overview of mycelium fibers-description, properties, drawbacks and applications.               83
  • Table 26. Overview of chitosan-description, properties, drawbacks and applications.                86
  • Table 27. Commercial Examples of Chitosan-based Films and Coatings and Companies.      86
  • Table 28. Bio-based naphtha markets and applications. 88
  • Table 29. Bio-naphtha market value chain.               89
  • Table 30. Commercial Examples of Bio-Naphtha Packaging and Companies.  90
  • Table 31. Pros and cons of different type of food packaging materials.   91
  • Table 32. Active Biodegradable Films films and their food applications.               98
  • Table 33. Intelligent Biodegradable Films.  98
  • Table 34. Edible films and coatings market summary.       101
  • Table 35. Summary of barrier films and coatings for packaging. 105
  • Table 36. Types of polyols.    107
  • Table 37. Polyol producers.  108
  • Table 38. Bio-based polyurethane coating products.          108
  • Table 39. Bio-based acrylate resin products.           110
  • Table 40. Polylactic acid (PLA) market analysis.    110
  • Table 41. Commercially available PHAs.     113
  • Table 42. Market overview for cellulose nanofibers in paints and coatings.         114
  • Table 43. Companies developing cellulose nanofibers products in paints and coatings.           116
  • Table 44. Types of protein based-biomaterials, applications and companies.   118
  • Table 45. CO2 utilization and removal pathways.  120
  • Table 46. CO2 utilization products developed by chemical and plastic producers.        123
  • Table 47. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   125
  • Table 48. Typical applications for bioplastics in flexible packaging.         125
  • Table 49. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes)      126
  • Table 50. Typical applications for bioplastics in rigid packaging. 128
  • Table 51. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes).           128
  • Table 52. Market revenues for bio-based coatings in packaging, 2018-2035 (billions USD), high estimate.                130
  • Table 53. Lactips plastic pellets.       235
  • Table 54. Oji Holdings CNF products.            265
  •  

List of Figures

  • Figure 1. Global packaging market by material type.           18
  • Figure 2. Global biodegradable and compostable packaging by biobased plastics type, 2023-2035 (1,000 tonnes).             20
  • Figure 3. Global biodegradable and compostable packaging by packaging product type, 2023-2035 (1,000 tonnes).             20
  • Figure 4. Global biodegradable and compostable packaging by end-use market, 2023-2035 (1,000 tonnes).             21
  • Figure 5. Global biodegradable and compostable packaging by region, 2023-2035 (1,000 tonnes).   22
  • Figure 6. Routes for synthesizing polymers from fossil-based and bio-based resources.           36
  • Figure 7. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      63
  • Figure 8. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.  64
  • Figure 9. Cellulose microfibrils and nanofibrils.     65
  • Figure 10. TEM image of cellulose nanocrystals.   67
  • Figure 11. CNC slurry.              67
  • Figure 12. CNF gel.     69
  • Figure 13. Bacterial nanocellulose shapes 76
  • Figure 14. BLOOM masterbatch from Algix.               82
  • Figure 15. Typical structure of mycelium-based foam.      85
  • Figure 16. Types of bio-based materials used for antimicrobial food packaging application.  100
  • Figure 17. Water soluble packaging by Notpla.        103
  • Figure 18. Examples of edible films in food packaging.     104
  • Figure 19. Schematic of gas barrier properties of nanoclay film. 105
  • Figure 20. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.               117
  • Figure 21. Applications for CO2.       120
  • Figure 22. Life cycle of CO2-derived products and services.          122
  • Figure 23.  Conversion pathways for CO2-derived polymeric materials  123
  • Figure 24. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes).   127
  • Figure 25. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes).         129
  • Figure 26. Market revenues for bio-based coatings in packaging, 2018-2035 (billions USD), conservative estimate.          130
  • Figure 27. Pluumo.     133
  • Figure 28. Anpoly cellulose nanofiber hydrogel.     142
  • Figure 29. MEDICELLU™.         143
  • Figure 30. Asahi Kasei CNF fabric sheet.     149
  • Figure 31. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.          150
  • Figure 32. CNF nonwoven fabric.      151
  • Figure 33. Passionfruit wrapped in Xgo Circular packaging.           156
  • Figure 34. BIOLO e-commerce mailer bag made from PHA.           161
  • Figure 35. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          162
  • Figure 36. Fiber-based screw cap.   170
  • Figure 37. SEELCAP ONEGO.              175
  • Figure 38. CJ CheilJedang's biodegradable PHA-based wrapper for shipping products.              183
  • Figure 39. CuanSave film.     185
  • Figure 40. ELLEX products.   187
  • Figure 41. CNF-reinforced PP compounds.               188
  • Figure 42. Kirekira! toilet wipes.         188
  • Figure 43. Edible packaging from Dissolves.             192
  • Figure 44. Rheocrysta spray.                193
  • Figure 45. DKS CNF products.            193
  • Figure 46. Evoware edible seaweed-based packaging       204
  • Figure 47. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.        205
  • Figure 48. Forest and Whale container.        211
  • Figure 49. PHA production process.               212
  • Figure 50. Soy Silvestre’s wheatgrass shots.             213
  • Figure 51. AVAPTM process. 217
  • Figure 52. GreenPower+™ process.  217
  • Figure 53. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               220
  • Figure 54. CNF gel.     222
  • Figure 55. Block nanocellulose material.    222
  • Figure 56. CNF products developed by Hokuetsu.                223
  • Figure 57. Unilever Carte D’Or ice cream packaging.          225
  • Figure 58. Kami Shoji CNF products.              230
  • Figure 59. IPA synthesis method.      248
  • Figure 60. Compostable water pod.               259
  • Figure 61. XCNF.          276
  • Figure 62: Innventia AB movable nanocellulose demo plant.        277
  • Figure 63. Shellworks packaging containers.           282
  • Figure 64. Thales packaging incorporating Fibrease.           288
  • Figure 65. Sulapac cosmetics containers. 290
  • Figure 66.  Sulzer equipment for PLA polymerization processing.              291
  • Figure 67. Silver / CNF composite dispersions.      297
  • Figure 68. CNF/nanosilver powder.  298
  • Figure 69. Corbion FDCA production process.        299
  • Figure 70. UPM biorefinery process.               301
  • Figure 71. Vegea production process.           304
  • Figure 72. Worn Again products.       307
  • Figure 73. S-CNF in powder form.    309

 

 

 

The Global Market for Biodegradable and Compostable Packaging 2025-2035
The Global Market for Biodegradable and Compostable Packaging 2025-2035
PDF download/by email.

The Global Market for Biodegradable and Compostable Packaging 2025-2035
The Global Market for Biodegradable and Compostable Packaging 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.